import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_path = "ibm-granite/granite-3b-code-base" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) model.eval() def generate_code(input_text): input_tokens = tokenizer(input_text, return_tensors="pt") for i in input_tokens: input_tokens[i] = input_tokens[i].to(device) output = model.generate(**input_tokens, max_new_tokens=200) output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0] return output_text # Gradio Interface # Updated Gradio Interface iface = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=2, placeholder="Enter code/text snippet here..."), outputs=gr.Textbox(label="Generated Code") ) # Launch the interface iface.launch()