khaanaGPT / app.py
shreydan's picture
add all files
e5fca28
raw
history blame
1.65 kB
from transformers import pipeline
import gradio as gr
import warnings
warnings.simplefilter('ignore')
model_path = './khaanaGPT'
contrastive_search_config = dict(
penalty_alpha = 0.5,
top_k = 5,
max_new_tokens = 512,
pad_token_id = 50259
)
model = pipeline('text-generation',model=model_path)
def create_prompt(ingredients):
ingredients = ','.join([x.strip() for x in ingredients.split(',')])
ingredients = ingredients.strip().replace(',','\n').lower()
s = f"<|startoftext|>Ingredients:\n{ingredients}\n\nInstructions:\n"
return s
def generate(prompt):
recipe = model(prompt,**contrastive_search_config)[0]['generated_text']
recipe = recipe.replace('<|startoftext|>','')
return recipe
def wrapper(ingredients):
prompt = create_prompt(ingredients)
recipe = generate(prompt)
return recipe
intro_html = """
<center><h1>खानाGPT</h1></center>
<center>
<p>it's not perfect, may ± ingredients. The recipes are coherent,
but the main purpose of this project was to understand fine-tuning a causalLM like GPT-2.
This model was fine-tuned on GPT-2 Small.</p>
</center>
"""
with gr.Blocks() as demo:
gr.HTML(intro_html)
ingredients = gr.Textbox(label="ingredients",
placeholder='separate the ingredients with a comma.')
output = gr.Textbox(label="recipe",lines=15,)
greet_btn = gr.Button("Create a recipe!")
gr.Examples(['yellow dal, turmeric, green peas, tomatoes',
'chicken, soy sauce, tomato sauce, vinegar'],
inputs=ingredients
)
greet_btn.click(fn=wrapper, inputs=ingredients, outputs=output)
demo.launch()