shreydan commited on
Commit
697eefa
1 Parent(s): d309158
README.md CHANGED
@@ -1,12 +1,10 @@
1
  ---
2
- title: Youtube QandA
3
- emoji: 🐨
4
- colorFrom: blue
5
- colorTo: purple
6
  sdk: streamlit
7
  sdk_version: 1.17.0
8
  app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Youtube Q&A
3
+ emoji: 📹️
4
+ colorFrom: red
5
+ colorTo: black
6
  sdk: streamlit
7
  sdk_version: 1.17.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
 
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_player import st_player
3
+
4
+ from model import Engine
5
+ from fetch_transcript import fetch_transcript
6
+ from preprocessing import create_similarity_text, create_result_url
7
+
8
+ with st.container():
9
+ st.title('YouTube Q&A Search')
10
+ st.write('Ask YouTube videos questions and get your answers :)')
11
+
12
+ with st.container():
13
+
14
+ url_input = st.text_input(label='Video',placeholder='enter YouTube video url')
15
+
16
+ question_input = st.text_input(label='Question',placeholder='enter your question')
17
+
18
+ get_ans = st.button(label='Answer!')
19
+
20
+ if len(url_input)!='' and len(question_input)!='' and get_ans:
21
+
22
+ with st.spinner('loading your video...'):
23
+ transcript = fetch_transcript(url_input)
24
+ model = Engine(transcript)
25
+ prev_url = url_input
26
+
27
+ with st.spinner('finding an answer...'):
28
+ answer = model.ask(question_input)
29
+ similarity_text = create_similarity_text(question_input,answer)
30
+ groups,timestamps = model.find_similar(similarity_text)
31
+ url = create_result_url(url_input,timestamps[0])
32
+
33
+ with st.container():
34
+
35
+ st.caption('Extracted Answer:')
36
+ st.write(answer)
37
+ st.caption('In Video:')
38
+ st_player(url)
39
+
fetch_transcript.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ from youtube_transcript_api import YouTubeRequestFailed, YouTubeTranscriptApi
3
+
4
+ from preprocessing import stride_sentences
5
+
6
+
7
+ def validate_youtube_link(url: str) -> str:
8
+ """
9
+ this method validates the youtube video link provided.
10
+ input : url (str)
11
+ outputs: transcript (string/dict)
12
+ """
13
+ yt_regex = r"^.*(youtu.be\/|v\/|u\/\w\/|embed\/|watch\?v=|\&v=|\?v=)([^#\&\?]*).*"
14
+ matches = re.findall(yt_regex, url)
15
+
16
+ assert (len(matches[0][1]) == 11), "Invalid YouTube Link"
17
+
18
+ video_id:str = matches[0][1]
19
+
20
+ return video_id
21
+
22
+
23
+ def zip_transcript(transcript:list) -> dict:
24
+ start_times = []
25
+ texts = []
26
+ for item in transcript:
27
+ start_times.append(item['start'])
28
+ texts.append(item['text'].strip().replace('\n',' '))
29
+
30
+ return {
31
+ 'timestamps': start_times,
32
+ 'texts': texts
33
+ }
34
+
35
+
36
+
37
+ def full_text(transcript: list) -> str:
38
+ texts = []
39
+ for item in transcript:
40
+ texts.append(item['text'])
41
+ return ' '.join(texts).strip()
42
+
43
+
44
+ def fetch_transcript(url: str) -> list:
45
+
46
+ video_id = validate_youtube_link(url)
47
+
48
+ try:
49
+ transcript:list = YouTubeTranscriptApi.get_transcript(video_id=video_id)
50
+
51
+ except YouTubeRequestFailed:
52
+ raise Exception('YouTube Request Failed, try again later.')
53
+
54
+ return transcript
55
+
56
+
57
+
58
+ if __name__ == '__main__':
59
+ sample = 'https://www.youtube.com/watch?v=t6V9i8fFADI'
60
+ sample2 = 'https://www.youtube.com/watch?v=1nLHIM2IPRY'
61
+ fake_sample = 'https://www.youtube.com/watch?v=asdf3'
62
+ transcript = fetch_transcript(url=sample)
63
+
64
+ times, texts = zip_transcript(transcript)
65
+ texts = stride_sentences(texts)
66
+ print(texts[0])
67
+
68
+ # with open('sample_group.txt','w') as f:
69
+ # for group in groups:
70
+ # f.write(f"{group}\n\n")
model.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import torch
4
+ from sentence_transformers import SentenceTransformer
5
+ from sentence_transformers.util import cos_sim
6
+ from transformers import pipeline
7
+ from preprocessing import stride_sentences
8
+ from fetch_transcript import zip_transcript
9
+
10
+
11
+ class Engine:
12
+ def __init__(self, transcript:list) -> None:
13
+
14
+ self.base_path = Path('./models')
15
+
16
+ self.qa_model_name = 'QA_Model'
17
+ self.qa_model_path = self.base_path / self.qa_model_name
18
+ self.qa_model = pipeline('question-answering',model=str(self.qa_model_path))
19
+
20
+ self.sim_model_name = 'Similarity_Model'
21
+ self.sim_model_path = self.base_path / self.sim_model_name
22
+ self.sim_model = SentenceTransformer(self.sim_model_path)
23
+
24
+ self.timestamps, self.texts = zip_transcript(transcript).values()
25
+
26
+ self.stride = 10
27
+ self.text_groups = stride_sentences(self.texts,self.stride)
28
+
29
+ self.embeddings = self._encode_transcript()
30
+
31
+
32
+ def _encode_transcript(self):
33
+ return self.sim_model.encode(self.text_groups)
34
+
35
+
36
+ def ask(self, question_text:str):
37
+
38
+ result = self.qa_model(
39
+ question=question_text,
40
+ context=' '.join(self.text_groups).strip(),
41
+ doc_stride=256,
42
+ max_answer_len=512,
43
+ max_question_len=128,
44
+ )
45
+ return result['answer']
46
+
47
+
48
+ def find_similar(self, txt:str, top_k=1):
49
+ txt = self.sim_model.encode(txt)
50
+ similarities:torch.Tensor = cos_sim(txt,self.embeddings)
51
+ similarities = similarities.reshape(-1)
52
+ indices = list(torch.argsort(similarities))
53
+ indices = [idx.item() for idx in indices[::-1]][:top_k]
54
+ groups = [self.text_groups[i] for i in indices]
55
+ timestamps = [self.timestamps[self.stride*i] for i in indices]
56
+ return groups, timestamps
57
+
58
+
59
+ if __name__ == '__main__':
60
+ model = Engine()
61
+
models/QA_Model/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepset/roberta-base-squad2",
3
+ "architectures": [
4
+ "RobertaForQuestionAnswering"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "language": "english",
17
+ "layer_norm_eps": 1e-05,
18
+ "max_position_embeddings": 514,
19
+ "model_type": "roberta",
20
+ "name": "Roberta",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 1,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.26.1",
27
+ "type_vocab_size": 1,
28
+ "use_cache": true,
29
+ "vocab_size": 50265
30
+ }
models/QA_Model/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/QA_Model/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d3de9857583a4639b6f23a05a2e9531b7c1c64a0c13adcc9671156bf7bcd740
3
+ size 496296301
models/QA_Model/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
models/QA_Model/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models/QA_Model/tokenizer_config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "cls_token": {
12
+ "__type": "AddedToken",
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "do_lower_case": false,
20
+ "eos_token": {
21
+ "__type": "AddedToken",
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "errors": "replace",
29
+ "full_tokenizer_file": null,
30
+ "mask_token": {
31
+ "__type": "AddedToken",
32
+ "content": "<mask>",
33
+ "lstrip": true,
34
+ "normalized": true,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ },
38
+ "model_max_length": 512,
39
+ "name_or_path": "deepset/roberta-base-squad2",
40
+ "pad_token": {
41
+ "__type": "AddedToken",
42
+ "content": "<pad>",
43
+ "lstrip": false,
44
+ "normalized": true,
45
+ "rstrip": false,
46
+ "single_word": false
47
+ },
48
+ "sep_token": {
49
+ "__type": "AddedToken",
50
+ "content": "</s>",
51
+ "lstrip": false,
52
+ "normalized": true,
53
+ "rstrip": false,
54
+ "single_word": false
55
+ },
56
+ "special_tokens_map_file": "/root/.cache/huggingface/hub/models--deepset--roberta-base-squad2/snapshots/d39b8d4166b0683451bbce6f047de1a238c0b5bf/special_tokens_map.json",
57
+ "tokenizer_class": "RobertaTokenizer",
58
+ "trim_offsets": true,
59
+ "unk_token": {
60
+ "__type": "AddedToken",
61
+ "content": "<unk>",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false
66
+ }
67
+ }
models/QA_Model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
models/Similarity_Model/1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
models/Similarity_Model/README.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ language: en
8
+ license: apache-2.0
9
+ datasets:
10
+ - s2orc
11
+ - flax-sentence-embeddings/stackexchange_xml
12
+ - MS Marco
13
+ - gooaq
14
+ - yahoo_answers_topics
15
+ - code_search_net
16
+ - search_qa
17
+ - eli5
18
+ - snli
19
+ - multi_nli
20
+ - wikihow
21
+ - natural_questions
22
+ - trivia_qa
23
+ - embedding-data/sentence-compression
24
+ - embedding-data/flickr30k-captions
25
+ - embedding-data/altlex
26
+ - embedding-data/simple-wiki
27
+ - embedding-data/QQP
28
+ - embedding-data/SPECTER
29
+ - embedding-data/PAQ_pairs
30
+ - embedding-data/WikiAnswers
31
+
32
+ ---
33
+
34
+
35
+ # all-MiniLM-L12-v2
36
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
37
+
38
+ ## Usage (Sentence-Transformers)
39
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
40
+
41
+ ```
42
+ pip install -U sentence-transformers
43
+ ```
44
+
45
+ Then you can use the model like this:
46
+ ```python
47
+ from sentence_transformers import SentenceTransformer
48
+ sentences = ["This is an example sentence", "Each sentence is converted"]
49
+
50
+ model = SentenceTransformer('sentence-transformers/all-MiniLM-L12-v2')
51
+ embeddings = model.encode(sentences)
52
+ print(embeddings)
53
+ ```
54
+
55
+ ## Usage (HuggingFace Transformers)
56
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
57
+
58
+ ```python
59
+ from transformers import AutoTokenizer, AutoModel
60
+ import torch
61
+ import torch.nn.functional as F
62
+
63
+ #Mean Pooling - Take attention mask into account for correct averaging
64
+ def mean_pooling(model_output, attention_mask):
65
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
66
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
67
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
68
+
69
+
70
+ # Sentences we want sentence embeddings for
71
+ sentences = ['This is an example sentence', 'Each sentence is converted']
72
+
73
+ # Load model from HuggingFace Hub
74
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v2')
75
+ model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v2')
76
+
77
+ # Tokenize sentences
78
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
79
+
80
+ # Compute token embeddings
81
+ with torch.no_grad():
82
+ model_output = model(**encoded_input)
83
+
84
+ # Perform pooling
85
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
86
+
87
+ # Normalize embeddings
88
+ sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
89
+
90
+ print("Sentence embeddings:")
91
+ print(sentence_embeddings)
92
+ ```
93
+
94
+ ## Evaluation Results
95
+
96
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-MiniLM-L12-v2)
97
+
98
+ ------
99
+
100
+ ## Background
101
+
102
+ The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
103
+ contrastive learning objective. We used the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model and fine-tuned in on a
104
+ 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
105
+
106
+ We developped this model during the
107
+ [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
108
+ organized by Hugging Face. We developped this model as part of the project:
109
+ [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
110
+
111
+ ## Intended uses
112
+
113
+ Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
114
+ the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
115
+
116
+ By default, input text longer than 256 word pieces is truncated.
117
+
118
+
119
+ ## Training procedure
120
+
121
+ ### Pre-training
122
+
123
+ We use the pretrained [`microsoft/MiniLM-L12-H384-uncased`](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
124
+
125
+ ### Fine-tuning
126
+
127
+ We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
128
+ We then apply the cross entropy loss by comparing with true pairs.
129
+
130
+ #### Hyper parameters
131
+
132
+ We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
133
+ We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
134
+ a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
135
+
136
+ #### Training data
137
+
138
+ We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
139
+ We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
140
+
141
+
142
+ | Dataset | Paper | Number of training tuples |
143
+ |--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
144
+ | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
145
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
146
+ | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
147
+ | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
148
+ | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
149
+ | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
150
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
151
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
152
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
153
+ | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
154
+ | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
155
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
156
+ | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
157
+ | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
158
+ | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
159
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
160
+ | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
161
+ | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
162
+ | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
163
+ | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
164
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
165
+ | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
166
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
167
+ | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
168
+ | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
169
+ | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
170
+ | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
171
+ | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
172
+ | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
173
+ | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
174
+ | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
175
+ | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
176
+ | **Total** | | **1,170,060,424** |
models/Similarity_Model/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L12-v2/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.20.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
models/Similarity_Model/config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
models/Similarity_Model/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
models/Similarity_Model/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54609dea3ff88f3167f049eeadbfe780b1173a3117bfac862134ebcd8ce33661
3
+ size 133506609
models/Similarity_Model/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
models/Similarity_Model/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
models/Similarity_Model/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models/Similarity_Model/tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_basic_tokenize": true,
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L12-v2/",
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "special_tokens_map_file": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L12-v2/special_tokens_map.json",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
models/Similarity_Model/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessing.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def stride_sentences(texts:list, stride=10):
2
+ groups = [texts[i:i+stride] for i in range(0, len(texts), stride)]
3
+ groups = [' '.join(group).strip() for group in groups]
4
+ return groups
5
+
6
+
7
+ def dequestionize(question:str):
8
+ question_words = [word for word in question.split() if word.lower() not in ['what','where','how','who','why']]
9
+ return ' '.join(question_words).replace('?','').strip()
10
+
11
+
12
+ def create_similarity_text(question:str, answer: str):
13
+ question = dequestionize(question)
14
+ return f"{answer} {question}"
15
+
16
+ def create_result_url(base_url,timestamp):
17
+ full_url = f"{base_url}&t={int(timestamp)}s"
18
+ return full_url
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ transformers
2
+ youtube-transcript-api
3
+ streamlit
4
+ streamlit-player