Spaces:
Runtime error
Runtime error
import streamlit as st | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load the Phi 2 model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
"microsoft/phi-2", | |
trust_remote_code=True | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
# "kroonen/phi-2-GGUF", | |
"microsoft/phi-2", | |
device_map="auto", | |
trust_remote_code=True, | |
torch_dtype=torch.float32 | |
) | |
# Streamlit UI | |
st.title("Microsoft Phi 2 Streamlit App") | |
# User input prompt | |
prompt = st.text_area("Enter your prompt:", """Write a short summary about how to create a healthy lifestyle.""") | |
# Generate output based on user input | |
if st.button("Generate Output"): | |
with torch.no_grad(): | |
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt", | |
return_attention_mask=False | |
) | |
output_ids = model.generate( | |
token_ids.to(model.device), | |
# max_new_tokens=512, | |
do_sample=True, | |
temperature=0.3, | |
max_length=200 | |
) | |
output = tokenizer.decode(output_ids[0][token_ids.size(1):]) | |
st.text("Generated Output:") | |
st.write(output) |