StableGarment / app.py
loooooong's picture
del variant
1a06c05
raw
history blame
9.39 kB
# adapted from https://huggingface.co/spaces/HumanAIGC/OutfitAnyone/blob/main/app.py
import torch
import spaces
import gradio as gr
from PIL import Image
import numpy as np
from torchvision import transforms
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import UniPCMultistepScheduler
from diffusers import AutoencoderKL
from diffusers import StableDiffusionPipeline
from diffusers.loaders import LoraLoaderMixin
import os
from os.path import join as opj
# run only once
token = os.getenv("ACCESS_TOKEN")
os.system(f"python -m pip install git+https://{token}@github.com/logn-2024/StableGarment.git")
from stablegarment.models import AppearanceEncoderModel,ControlNetModel
from stablegarment.piplines import StableGarmentPipeline,StableGarmentControlNetPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if "cuda"==device else torch.float32
height = 512
width = 384
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch_dtype,device=device)
scheduler = UniPCMultistepScheduler.from_pretrained("runwayml/stable-diffusion-v1-5",subfolder="scheduler")
pretrained_garment_encoder_path = "loooooong/StableGarment_text2img"
garment_encoder = AppearanceEncoderModel.from_pretrained(pretrained_garment_encoder_path,torch_dtype=torch_dtype,subfolder="garment_encoder")
garment_encoder = garment_encoder.to(device=device,dtype=torch_dtype)
pipeline_t2i = StableGarmentPipeline.from_pretrained(base_model_path, vae=vae, torch_dtype=torch_dtype,).to(device=device) # variant="fp16"
# pipeline = StableDiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", vae=vae, torch_dtype=torch_dtype, variant="fp16").to(device=device)
pipeline_t2i.scheduler = scheduler
pipeline_tryon = None
'''
# not ready
pretrained_model_path = "part_module_controlnet_imp2"
controlnet = ControlNetModel.from_pretrained(pretrained_model_path,subfolder="controlnet")
text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder='text_encoder')
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder='tokenizer')
pipeline_tryon = StableGarmentControlNetPipeline(
vae,
text_encoder,
tokenizer,
pipeline_t2i.unet,
controlnet,
scheduler,
).to(device=device,dtype=torch_dtype)
'''
def prepare_controlnet_inputs(agn_mask_list,densepose_list):
for i,agn_mask_img in enumerate(agn_mask_list):
agn_mask_img = np.array(agn_mask_img.convert("L"))
agn_mask_img = np.expand_dims(agn_mask_img, axis=-1)
agn_mask_img = (agn_mask_img >= 128).astype(np.float32) # 0 or 1
agn_mask_list[i] = 1. - agn_mask_img
densepose_list = [np.array(img)/255. for img in densepose_list]
controlnet_inputs = []
for mask,pose in zip(agn_mask_list,densepose_list):
controlnet_inputs.append(torch.tensor(np.concatenate([mask, pose], axis=-1)).permute(2,0,1))
controlnet_inputs = torch.stack(controlnet_inputs)
return controlnet_inputs
@spaces.GPU(enable_queue=True)
def tryon(prompt,init_image,garment_top,garment_down,):
basename = os.path.splitext(os.path.basename(init_image))[0]
image_agn = Image.open(opj(parse_dir,basename+"_agn.jpg")).resize((width,height))
image_agn_mask = Image.open(opj(parse_dir,basename+"_mask.png")).resize((width,height))
densepose_image = Image.open(opj(parse_dir,basename+"_densepose.png")).resize((width,height))
garment_top = Image.open(garment_top).resize((width,height))
garment_images = [garment_top,]
prompt = [prompt,]
cloth_prompt = ["",]
controlnet_condition = prepare_controlnet_inputs([image_agn_mask],[densepose_image])
images = pipeline_tryon(prompt, negative_prompt="",cloth_prompt=cloth_prompt, # negative_cloth_prompt = n_prompt,
height=height,width=width,num_inference_steps=25,guidance_scale=1.5,eta=0.0,
controlnet_condition=controlnet_condition,reference_image=garment_images,
garment_encoder=garment_encoder,condition_extra=image_agn,
generator=None,).images
return images[0]
@spaces.GPU(enable_queue=True)
def text2image(prompt,init_image,garment_top,garment_down,style_fidelity=1.):
garment_top = Image.open(garment_top).resize((width,height))
garment_top = transforms.CenterCrop((height,width))(transforms.Resize(max(height, width))(garment_top))
garment_images = [garment_top,]
prompt = [prompt,]
cloth_prompt = ["",]
n_prompt = "nsfw, unsaturated, abnormal, unnatural, artifact"
negative_prompt = [n_prompt]
images = pipeline_t2i(prompt,negative_prompt=negative_prompt,cloth_prompt=cloth_prompt,height=height,width=width,
num_inference_steps=30,guidance_scale=4,num_images_per_prompt=1,style_fidelity=style_fidelity,
garment_encoder=garment_encoder,garment_image=garment_images,).images
return images[0]
# def text2image(prompt,init_image,garment_top,garment_down,):
# return pipeline(prompt).images[0]
def infer(prompt,init_image,garment_top,garment_down,t2i_only,style_fidelity):
if t2i_only:
return text2image(prompt,init_image,garment_top,garment_down,style_fidelity)
else:
return tryon(prompt,init_image,garment_top,garment_down)
init_state,prompt_state = None,""
t2i_only_state = True
def set_mode(t2i_only,person_condition,prompt):
global init_state, prompt_state, t2i_only_state
t2i_only_state = not t2i_only_state
init_state, prompt_state = person_condition or init_state, prompt_state or prompt
if t2i_only:
return [gr.Image(sources='clipboard', type="filepath", label="model",value=None, interactive=False),
gr.Textbox(placeholder="", label="prompt(for t2i)", value=prompt_state, interactive=True),
]
else:
return [gr.Image(sources='clipboard', type="filepath", label="model",value=init_state, interactive=False),
gr.Textbox(placeholder="", label="prompt(for t2i)", value="", interactive=False),
]
def example_fn(inputs,):
if t2i_only_state:
return gr.Image(sources='clipboard', type="filepath", label="model", value=None, interactive=False)
return gr.Image(sources='clipboard', type="filepath", label="model",value=inputs, interactive=False)
gr.set_static_paths(paths=["assets/images/model"])
model_dir = opj(os.path.dirname(__file__), "assets/images/model")
garment_dir = opj(os.path.dirname(__file__), "assets/images/garment")
parse_dir = opj(os.path.dirname(__file__), "assets/images/image_parse")
model = opj(model_dir, "13987_00.jpg")
all_person = [opj(model_dir,fname) for fname in os.listdir(model_dir) if fname.endswith(".jpg")]
with gr.Blocks(css = ".output-image, .input-image, .image-preview {height: 400px !important} ", ) as gradio_app:
gr.Markdown("# StableGarment")
with gr.Row():
with gr.Column():
init_image = gr.Image(sources='clipboard', type="filepath", label="model", value=None, interactive=False)
example = gr.Examples(inputs=gr.Image(visible=False), #init_image,
examples_per_page=4,
examples=all_person,
run_on_click=True,
outputs=init_image,
fn=example_fn,)
with gr.Column():
with gr.Row():
images_top = [opj(garment_dir,fname) for fname in os.listdir(garment_dir) if fname.endswith(".jpg")]
garment_top = gr.Image(sources='upload', type="filepath", label="top garment",value=images_top[0]) # ,interactive=False
example_top = gr.Examples(inputs=garment_top,
examples_per_page=4,
examples=images_top)
images_down = []
garment_down = gr.Image(sources='upload', type="filepath", label="lower garment",interactive=False, visible=False)
example_down = gr.Examples(inputs=garment_down,
examples_per_page=4,
examples=images_down)
prompt = gr.Textbox(placeholder="", label="prompt(for t2i)",) # interactive=False
with gr.Row():
t2i_only = gr.Checkbox(label="t2i with garment", info="Only text and garment.", elem_id="t2i_switch", value=True, interactive=False,)
run_button = gr.Button(value="Run")
style_fidelity = gr.Slider(0, 1, value=1, label="fidelity(for t2i)") # , info=""
t2i_only.change(fn=set_mode,inputs=[t2i_only,init_image,prompt],outputs=[init_image,prompt,])
with gr.Column():
gallery = gr.Image()
run_button.click(fn=infer,
inputs=[
prompt,
init_image,
garment_top,
garment_down,
t2i_only,
style_fidelity,
],
outputs=[gallery],)
if __name__ == "__main__":
gradio_app.launch()