Spaces:
Runtime error
Runtime error
shripadbhat
commited on
Commit
•
4c700e7
1
Parent(s):
d24f707
Update app.py
Browse files
app.py
CHANGED
@@ -4,17 +4,6 @@ from transformers import pipeline
|
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
6 |
|
7 |
-
model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelWithLMHead.from_pretrained(model_name)
|
10 |
-
|
11 |
-
#from transformers import pipeline
|
12 |
-
|
13 |
-
#text2text_generator = pipeline("text2text-generation", model = "gpt2")
|
14 |
-
|
15 |
-
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
16 |
-
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
17 |
-
qa_model = pipeline("question-answering",'a-ware/bart-squadv2')
|
18 |
|
19 |
def fetch_answers(question, document ):
|
20 |
document_paragraphs = document.splitlines()
|
@@ -56,10 +45,22 @@ def fetch_answers(question, document ):
|
|
56 |
|
57 |
return top_5_query_paragraph_answer_list
|
58 |
|
|
|
59 |
st.title('Document Question Answering System')
|
60 |
query = st.text_area("Query", "", height=25)
|
61 |
document = st.text_area("Document Text", "", height=100)
|
62 |
|
|
|
|
|
63 |
if st.button("Get Answers From Document"):
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
|
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def fetch_answers(question, document ):
|
9 |
document_paragraphs = document.splitlines()
|
|
|
45 |
|
46 |
return top_5_query_paragraph_answer_list
|
47 |
|
48 |
+
|
49 |
st.title('Document Question Answering System')
|
50 |
query = st.text_area("Query", "", height=25)
|
51 |
document = st.text_area("Document Text", "", height=100)
|
52 |
|
53 |
+
|
54 |
+
|
55 |
if st.button("Get Answers From Document"):
|
56 |
+
|
57 |
+
model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
+
model = AutoModelWithLMHead.from_pretrained(model_name)
|
60 |
+
|
61 |
+
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
62 |
+
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
63 |
+
qa_model = pipeline("question-answering",'a-ware/bart-squadv2')
|
64 |
+
|
65 |
+
st.markdown(fetch_answers(query, document))
|
66 |
|