Spaces:
Runtime error
Runtime error
shripadbhat
commited on
Commit
•
5ad2a61
1
Parent(s):
0dc42fe
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from transformers import pipeline
|
4 |
-
from sentence_transformers import CrossEncoder
|
5 |
-
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
6 |
-
|
7 |
-
|
8 |
-
def fetch_answers(question, document ):
|
9 |
-
document_paragraphs = document.splitlines()
|
10 |
-
query_paragraph_list = [(question, para) for para in document_paragraphs if len(para.strip()) > 0 ]
|
11 |
-
|
12 |
-
scores = passage_retreival_model.predict(query_paragraph_list)
|
13 |
-
top_5_indices = scores.argsort()[-5:]
|
14 |
-
top_5_query_paragraph_list = [query_paragraph_list[i] for i in top_5_indices ]
|
15 |
-
top_5_query_paragraph_list.reverse()
|
16 |
-
|
17 |
-
top_5_query_paragraph_answer_list = ""
|
18 |
-
count = 1
|
19 |
-
for query, passage in top_5_query_paragraph_list:
|
20 |
-
passage_sentences = sentence_segmenter.segment(passage)
|
21 |
-
answer = qa_model(question = query, context = passage)['answer']
|
22 |
-
evidence_sentence = ""
|
23 |
-
for i in range(len(passage_sentences)):
|
24 |
-
if answer.startswith('.') or answer.startswith(':'):
|
25 |
-
answer = answer[1:].strip()
|
26 |
-
if answer in passage_sentences[i]:
|
27 |
-
evidence_sentence = evidence_sentence + " " + passage_sentences[i]
|
28 |
-
|
29 |
-
|
30 |
-
model_input = f"question: {query} context: {evidence_sentence}"
|
31 |
-
encoded_input = tokenizer([model_input],
|
32 |
-
return_tensors='pt',
|
33 |
-
max_length=512,
|
34 |
-
truncation=True)
|
35 |
-
|
36 |
-
output = model.generate(input_ids = encoded_input.input_ids,
|
37 |
-
attention_mask = encoded_input.attention_mask)
|
38 |
-
output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
39 |
-
|
40 |
-
result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
|
41 |
-
result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
|
42 |
-
top_5_query_paragraph_answer_list += result_str
|
43 |
-
count+=1
|
44 |
-
|
45 |
-
return top_5_query_paragraph_answer_list
|
46 |
|
47 |
st.title('Document Question Answering System')
|
48 |
st.write("Loading the models...")
|
49 |
-
my_bar = st.progress(
|
50 |
-
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
52 |
-
model = AutoModelWithLMHead.from_pretrained(model_name)
|
53 |
-
my_bar.progress(25)
|
54 |
-
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
55 |
-
my_bar.progress(50)
|
56 |
-
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
57 |
-
my_bar.progress(75)
|
58 |
-
qa_model = pipeline("question-answering",'a-ware/bart-squadv2')
|
59 |
my_bar.progress(100)
|
60 |
st.write('Models Loaded')
|
61 |
|
62 |
query = st.text_input("Query")
|
63 |
-
|
64 |
|
65 |
if st.button("Get Answers From Document"):
|
66 |
|
67 |
-
st.markdown(fetch_answers(query,
|
68 |
|
69 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from question_answering import QuestionAnswering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
st.title('Document Question Answering System')
|
5 |
st.write("Loading the models...")
|
6 |
+
my_bar = st.progress(10)
|
7 |
+
qa = QuestionAnswering()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
my_bar.progress(100)
|
9 |
st.write('Models Loaded')
|
10 |
|
11 |
query = st.text_input("Query")
|
12 |
+
document_text = st.text_area("Document Text", "", height=100)
|
13 |
|
14 |
if st.button("Get Answers From Document"):
|
15 |
|
16 |
+
st.markdown(qa.fetch_answers(query, document_text))
|
17 |
|
18 |
|