shylusakthi
commited on
Commit
•
00d2b52
1
Parent(s):
50b7268
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, MarianMTModel, MarianTokenizer
|
3 |
+
|
4 |
+
# Load models and tokenizers
|
5 |
+
@st.cache_resource
|
6 |
+
def load_healthscribe_model():
|
7 |
+
model_name = "har1/HealthScribe-Clinical_Note_Generator"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
+
return model, tokenizer
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def load_translation_model(model_name):
|
14 |
+
model = MarianMTModel.from_pretrained(model_name)
|
15 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
16 |
+
return model, tokenizer
|
17 |
+
|
18 |
+
# Initialize models
|
19 |
+
healthscribe_model, healthscribe_tokenizer = load_healthscribe_model()
|
20 |
+
|
21 |
+
# Language selection options
|
22 |
+
language_options = {
|
23 |
+
"English to French": ("en", "fr"),
|
24 |
+
"French to English": ("fr", "en"),
|
25 |
+
"English to Spanish": ("en", "es"),
|
26 |
+
"Spanish to English": ("es", "en"),
|
27 |
+
"English to German": ("en", "de"),
|
28 |
+
"German to English": ("de", "en"),
|
29 |
+
"English to Italian": ("en", "it"),
|
30 |
+
"Italian to English": ("it", "en"),
|
31 |
+
}
|
32 |
+
|
33 |
+
# Streamlit UI setup
|
34 |
+
st.title("Multifunctional Text Processing App")
|
35 |
+
st.write("This app can generate clinical notes or translate text between languages.")
|
36 |
+
|
37 |
+
# Choose task
|
38 |
+
task = st.selectbox("Select a task:", ["Generate Clinical Note", "Translate Text"])
|
39 |
+
|
40 |
+
if task == "Generate Clinical Note":
|
41 |
+
st.subheader("Clinical Note Generator")
|
42 |
+
input_text = st.text_area("Enter patient information or medical notes:", height=200)
|
43 |
+
|
44 |
+
if st.button("Generate Clinical Note"):
|
45 |
+
if input_text.strip():
|
46 |
+
# Tokenize and generate
|
47 |
+
inputs = healthscribe_tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
48 |
+
outputs = healthscribe_model.generate(inputs["input_ids"], max_length=512, num_beams=5, early_stopping=True)
|
49 |
+
generated_note = healthscribe_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
|
51 |
+
# Display the result
|
52 |
+
st.subheader("Generated Clinical Note")
|
53 |
+
st.write(generated_note)
|
54 |
+
else:
|
55 |
+
st.warning("Please enter some text to generate a clinical note.")
|
56 |
+
|
57 |
+
elif task == "Translate Text":
|
58 |
+
st.subheader("Translation Tool")
|
59 |
+
language_pair = st.selectbox("Select language pair", list(language_options.keys()))
|
60 |
+
src_lang, tgt_lang = language_options[language_pair]
|
61 |
+
|
62 |
+
# Load the corresponding translation model and tokenizer
|
63 |
+
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
64 |
+
translation_model, translation_tokenizer = load_translation_model(model_name)
|
65 |
+
|
66 |
+
# Input text to translate
|
67 |
+
text = st.text_area("Enter text to translate:")
|
68 |
+
|
69 |
+
if st.button("Translate"):
|
70 |
+
if text.strip():
|
71 |
+
# Prepare the input for the model
|
72 |
+
inputs = translation_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
73 |
+
|
74 |
+
# Generate translation
|
75 |
+
translation = translation_model.generate(**inputs)
|
76 |
+
|
77 |
+
# Decode the output
|
78 |
+
translated_text = translation_tokenizer.decode(translation[0], skip_special_tokens=True)
|
79 |
+
|
80 |
+
# Display translation
|
81 |
+
st.write("**Original Text**:", text)
|
82 |
+
st.write("**Translated Text**:", translated_text)
|
83 |
+
else:
|
84 |
+
st.warning("Please enter some text to translate.")
|