Spaces:
Paused
Paused
import os | |
import torch as T | |
import re | |
from tqdm import tqdm | |
from datetime import timedelta | |
import requests | |
import hashlib | |
from io import BytesIO | |
def rank0(): | |
rank = os.environ.get('RANK') | |
if rank is None or rank == '0': | |
return True | |
else: | |
return False | |
def local0(): | |
local_rank = os.environ.get('LOCAL_RANK') | |
if local_rank is None or local_rank == '0': | |
return True | |
else: | |
return False | |
class tqdm0(tqdm): | |
def __init__(self, *args, **kwargs): | |
total = kwargs.get('total', None) | |
if total is None and len(args) > 0: | |
try: | |
total = len(args[0]) | |
except TypeError: | |
pass | |
if total is not None: | |
kwargs['miniters'] = max(1, total // 20) | |
super().__init__(*args, **kwargs, disable=not rank0(), bar_format='{bar}| {n_fmt}/{total_fmt} [{rate_fmt}{postfix}]') | |
def print0(*args, **kwargs): | |
if rank0(): | |
print(*args, **kwargs) | |
_PRINTED_IDS = set() | |
def printonce(*args, id=None, **kwargs): | |
if id is None: | |
id = ' '.join(map(str, args)) | |
if id not in _PRINTED_IDS: | |
print(*args, **kwargs) | |
_PRINTED_IDS.add(id) | |
def print0once(*args, **kwargs): | |
if rank0(): | |
printonce(*args, **kwargs) | |
def init_dist(): | |
if T.distributed.is_initialized(): | |
print0('Distributed already initialized') | |
rank = T.distributed.get_rank() | |
local_rank = int(os.environ.get('LOCAL_RANK', 0)) | |
world_size = T.distributed.get_world_size() | |
else: | |
try: | |
rank = int(os.environ['RANK']) | |
local_rank = int(os.environ['LOCAL_RANK']) | |
world_size = int(os.environ['WORLD_SIZE']) | |
device = f'cuda:{local_rank}' | |
T.cuda.set_device(device) | |
T.distributed.init_process_group(backend='nccl', timeout=timedelta(minutes=30), rank=rank, world_size=world_size, device_id=T.device(device)) | |
print(f'Rank {rank} of {world_size}.') | |
except Exception as e: | |
print0once(f'Not initializing distributed env: {e}') | |
rank = 0 | |
local_rank = 0 | |
world_size = 1 | |
return rank, local_rank, world_size | |
def load_ckpt(load_from_location, expected_hash=None): | |
if local0(): | |
os.makedirs('ckpt', exist_ok=True) | |
url = f"https://ckpt.si.inc/hertz-dev/{load_from_location}.pt" | |
save_path = f"ckpt/{load_from_location}.pt" | |
if not os.path.exists(save_path): | |
response = requests.get(url, stream=True) | |
total_size = int(response.headers.get('content-length', 0)) | |
with open(save_path, 'wb') as f, tqdm(total=total_size, desc=f'Downloading {load_from_location}.pt', unit='GB', unit_scale=1/(1024*1024*1024)) as pbar: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
pbar.update(len(chunk)) | |
if expected_hash is not None: | |
with open(save_path, 'rb') as f: | |
file_hash = hashlib.md5(f.read()).hexdigest() | |
if file_hash != expected_hash: | |
print(f'Hash mismatch for {save_path}. Expected {expected_hash} but got {file_hash}. Deleting checkpoint and trying again.') | |
os.remove(save_path) | |
return load_ckpt(load_from_location, expected_hash) | |
if T.distributed.is_initialized(): | |
T.distributed.barrier() # so that ranks don't try to load checkpoint before it's finished downloading | |
loaded = T.load(f"ckpt/{load_from_location}.pt", weights_only=False, map_location='cpu') | |
return loaded |