Spaces:
Runtime error
Runtime error
try: | |
import detectron2 | |
except: | |
import os | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
from matplotlib.pyplot import axis | |
import requests | |
import numpy as np | |
from torch import nn | |
import requests | |
import torch | |
import detectron2 | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
import streamlit as st | |
from detectron2.utils.visualizer import ColorMode | |
import os | |
import cv2 | |
from PIL import Image, ImageOps | |
import numpy as np | |
model_path = "model_final.pth" | |
cfg=get_cfg() | |
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml")) # load the default configuration | |
cfg.MODEL.WEIGHTS = 'model_final.pth' | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8 | |
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 | |
st.write(""" | |
# Gun Detection | |
""" | |
) | |
file = st.file_uploader("Please upload an image file(JPG/PNG/JPEG format)", type=["jpg", "png","jpeg"]) | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
dataset_name="guns" | |
classes=['guns','Gun'] | |
MetadataCatalog.get(dataset_name).set(thing_classes=classes) | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE='cpu' | |
predictor = DefaultPredictor(cfg) | |
def inference(image): | |
#height = image.height | |
#img = np.array(image.resize((800, height))) | |
img = np.array(image) | |
outputs = predictor(img) | |
v=Visualizer(img,MetadataCatalog.get(dataset_name),scale=1) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
return out.get_image() | |
if file is None: | |
st.text("Please upload an image file") | |
else: | |
image = Image.open(file).convert('RGB') | |
st.image(image,use_column_width=True) | |
st.write(""" | |
# Output!! | |
""" | |
) | |
predictions = inference(image) | |
st.image(predictions,use_column_width=True) |