Spaces:
Running
on
T4
Running
on
T4
File size: 21,853 Bytes
85bd48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
import jax
import jax.numpy as jnp
import tensorflow as tf
tf.config.set_visible_devices([], 'GPU')
import numpy as np
from alphafold.common import protein
from alphafold.common import residue_constants
from alphafold.model import model
from alphafold.model import folding
from alphafold.model import all_atom
from alphafold.model.tf import shape_placeholders
#######################
# reshape inputs
#######################
def make_fixed_size(feat, model_runner, length, batch_axis=True):
'''pad input features'''
cfg = model_runner.config
if batch_axis:
shape_schema = {k:[None]+v for k,v in dict(cfg.data.eval.feat).items()}
else:
shape_schema = {k:v for k,v in dict(cfg.data.eval.feat).items()}
pad_size_map = {
shape_placeholders.NUM_RES: length,
shape_placeholders.NUM_MSA_SEQ: cfg.data.eval.max_msa_clusters,
shape_placeholders.NUM_EXTRA_SEQ: cfg.data.common.max_extra_msa,
shape_placeholders.NUM_TEMPLATES: cfg.data.eval.max_templates
}
for k, v in feat.items():
# Don't transfer this to the accelerator.
if k == 'extra_cluster_assignment':
continue
shape = list(v.shape)
schema = shape_schema[k]
assert len(shape) == len(schema), (
f'Rank mismatch between shape and shape schema for {k}: '
f'{shape} vs {schema}')
pad_size = [pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)]
padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)]
if padding:
feat[k] = tf.pad(v, padding, name=f'pad_to_fixed_{k}')
feat[k].set_shape(pad_size)
return {k:np.asarray(v) for k,v in feat.items()}
#########################
# rmsd
#########################
def jnp_rmsdist(true, pred):
return _np_rmsdist(true, pred)
def jnp_rmsd(true, pred, add_dist=False):
rmsd = _np_rmsd(true, pred)
if add_dist: rmsd = (rmsd + _np_rmsdist(true, pred))/2
return rmsd
def jnp_kabsch_w(a, b, weights):
return _np_kabsch(a * weights[:,None], b)
def jnp_rmsd_w(true, pred, weights):
p = true - (true * weights[:,None]).sum(0,keepdims=True)/weights.sum()
q = pred - (pred * weights[:,None]).sum(0,keepdims=True)/weights.sum()
p = p @ _np_kabsch(p * weights[:,None], q)
return jnp.sqrt((weights*jnp.square(p-q).sum(-1)).sum()/weights.sum() + 1e-8)
def get_rmsd_loss_w(batch, outputs, copies=1):
weights = batch["all_atom_mask"][:,1]
true = batch["all_atom_positions"][:,1,:]
pred = outputs["structure_module"]["final_atom_positions"][:,1,:]
if copies == 1:
return jnp_rmsd_w(true, pred, weights)
else:
# TODO add support for weights
I = copies - 1
L = true.shape[0] // copies
p = true - true[:L].mean(0)
q = pred - pred[:L].mean(0)
p = p @ _np_kabsch(p[:L], q[:L])
rm = jnp.square(p[:L]-q[:L]).sum(-1).mean()
p,q = p[L:].reshape(I,1,L,-1),q[L:].reshape(1,I,L,-1)
rm += jnp.square(p-q).sum(-1).mean(-1).min(-1).sum()
return jnp.sqrt(rm / copies)
####################
# confidence metrics
####################
def get_plddt(outputs):
logits = outputs["predicted_lddt"]["logits"]
num_bins = logits.shape[-1]
bin_width = 1.0 / num_bins
bin_centers = jnp.arange(start=0.5 * bin_width, stop=1.0, step=bin_width)
probs = jax.nn.softmax(logits, axis=-1)
return jnp.sum(probs * bin_centers[None, :], axis=-1)
def get_pae(outputs):
prob = jax.nn.softmax(outputs["predicted_aligned_error"]["logits"],-1)
breaks = outputs["predicted_aligned_error"]["breaks"]
step = breaks[1]-breaks[0]
bin_centers = breaks + step/2
bin_centers = jnp.append(bin_centers,bin_centers[-1]+step)
return (prob*bin_centers).sum(-1)
####################
# loss functions
####################
def get_rmsd_loss(batch, outputs):
true = batch["all_atom_positions"][:,1,:]
pred = outputs["structure_module"]["final_atom_positions"][:,1,:]
return _np_rmsd(true,pred)
def _distogram_log_loss(logits, bin_edges, batch, num_bins, copies=1):
"""Log loss of a distogram."""
pos,mask = batch['pseudo_beta'],batch['pseudo_beta_mask']
sq_breaks = jnp.square(bin_edges)
dist2 = jnp.square(pos[:,None] - pos[None,:]).sum(-1,keepdims=True)
true_bins = jnp.sum(dist2 > sq_breaks, axis=-1)
true = jax.nn.one_hot(true_bins, num_bins)
if copies == 1:
errors = -(true * jax.nn.log_softmax(logits)).sum(-1)
sq_mask = mask[:,None] * mask[None,:]
avg_error = (errors * sq_mask).sum()/(1e-6 + sq_mask.sum())
return avg_error
else:
# TODO add support for masks
L = pos.shape[0] // copies
I = copies - 1
true_, pred_ = true[:L,:L], logits[:L,:L]
errors = -(true_ * jax.nn.log_softmax(pred_)).sum(-1)
avg_error = errors.mean()
true_, pred_ = true[:L,L:], logits[:L,L:]
true_, pred_ = true_.reshape(L,I,1,L,-1), pred_.reshape(L,1,I,L,-1)
errors = -(true_ * jax.nn.log_softmax(pred_)).sum(-1)
avg_error += errors.mean((0,-1)).min(-1).sum()
return avg_error / copies
def get_dgram_loss(batch, outputs, model_config, logits=None, copies=1):
# get cb features (ca in case of glycine)
pb, pb_mask = model.modules.pseudo_beta_fn(batch["aatype"],
batch["all_atom_positions"],
batch["all_atom_mask"])
if logits is None: logits = outputs["distogram"]["logits"]
dgram_loss = _distogram_log_loss(logits,
outputs["distogram"]["bin_edges"],
batch={"pseudo_beta":pb,"pseudo_beta_mask":pb_mask},
num_bins=model_config.model.heads.distogram.num_bins,
copies=copies)
return dgram_loss
def get_fape_loss(batch, outputs, model_config, use_clamped_fape=False):
sub_batch = jax.tree_map(lambda x: x, batch)
sub_batch["use_clamped_fape"] = use_clamped_fape
loss = {"loss":0.0}
folding.backbone_loss(loss, sub_batch, outputs["structure_module"], model_config.model.heads.structure_module)
return loss["loss"]
####################
# loss functions (restricted to idx and/or sidechains)
####################
def get_dgram_loss_idx(batch, outputs, idx, model_config):
idx_ref = batch["idx"]
pb, pb_mask = model.modules.pseudo_beta_fn(batch["aatype"][idx_ref],
batch["all_atom_positions"][idx_ref],
batch["all_atom_mask"][idx_ref])
dgram_loss = model.modules._distogram_log_loss(outputs["distogram"]["logits"][:,idx][idx,:],
outputs["distogram"]["bin_edges"],
batch={"pseudo_beta":pb,"pseudo_beta_mask":pb_mask},
num_bins=model_config.model.heads.distogram.num_bins)
return dgram_loss["loss"]
def get_fape_loss_idx(batch, outputs, idx, model_config, backbone=False, sidechain=True, use_clamped_fape=False):
idx_ref = batch["idx"]
sub_batch = batch.copy()
sub_batch.pop("idx")
sub_batch = jax.tree_map(lambda x: x[idx_ref,...],sub_batch)
sub_batch["use_clamped_fape"] = use_clamped_fape
value = jax.tree_map(lambda x: x, outputs["structure_module"])
loss = {"loss":0.0}
if sidechain:
value.update(folding.compute_renamed_ground_truth(sub_batch, value['final_atom14_positions'][idx,...]))
value['sidechains']['frames'] = jax.tree_map(lambda x: x[:,idx,:], value["sidechains"]["frames"])
value['sidechains']['atom_pos'] = jax.tree_map(lambda x: x[:,idx,:], value["sidechains"]["atom_pos"])
loss.update(folding.sidechain_loss(sub_batch, value, model_config.model.heads.structure_module))
if backbone:
value["traj"] = value["traj"][...,idx,:]
folding.backbone_loss(loss, sub_batch, value, model_config.model.heads.structure_module)
return loss["loss"]
def get_sc_rmsd(true_pos, pred_pos, aa_ident, atoms_to_exclude=None):
if atoms_to_exclude is None: atoms_to_exclude = ["N","C","O"]
# collect atom indices
idx,idx_alt = [],[]
for n,a in enumerate(aa_ident):
aa = idx_to_resname[a]
atoms = set(residue_constants.residue_atoms[aa])
atoms14 = residue_constants.restype_name_to_atom14_names[aa]
swaps = residue_constants.residue_atom_renaming_swaps.get(aa,{})
swaps.update({v:k for k,v in swaps.items()})
for atom in atoms.difference(atoms_to_exclude):
idx.append(n * 14 + atoms14.index(atom))
if atom in swaps:
idx_alt.append(n * 14 + atoms14.index(swaps[atom]))
else:
idx_alt.append(idx[-1])
idx, idx_alt = np.asarray(idx), np.asarray(idx_alt)
# select atoms
T, P = true_pos.reshape(-1,3)[idx], pred_pos.reshape(-1,3)[idx]
# select non-ambigious atoms
non_amb = idx == idx_alt
t, p = T[non_amb], P[non_amb]
# align non-ambigious atoms
aln = _np_kabsch(t-t.mean(0), p-p.mean(0))
T,P = (T-t.mean(0)) @ aln, P-p.mean(0)
P_alt = pred_pos.reshape(-1,3)[idx_alt]-p.mean(0)
# compute rmsd
msd = jnp.minimum(jnp.square(T-P).sum(-1),jnp.square(T-P_alt).sum(-1)).mean()
return jnp.sqrt(msd + 1e-8)
def get_sidechain_rmsd_idx(batch, outputs, idx, model_config, include_ca=True):
idx_ref = batch["idx"]
true_aa_idx = batch["aatype"][idx_ref]
true_pos = all_atom.atom37_to_atom14(batch["all_atom_positions"],batch)[idx_ref,:,:]
pred_pos = outputs["structure_module"]["final_atom14_positions"][idx,:,:]
bb_atoms_to_exclude = ["N","C","O"] if include_ca else ["N","CA","C","O"]
return get_sc_rmsd(true_pos, pred_pos, true_aa_idx, bb_atoms_to_exclude)
#################################################################################
#################################################################################
#################################################################################
def _np_len_pw(x, use_jax=True):
'''compute pairwise distance'''
_np = jnp if use_jax else np
x_norm = _np.square(x).sum(-1)
xx = _np.einsum("...ia,...ja->...ij",x,x)
sq_dist = x_norm[...,:,None] + x_norm[...,None,:] - 2 * xx
# due to precision errors the values can sometimes be negative
if use_jax: sq_dist = jax.nn.relu(sq_dist)
else: sq_dist[sq_dist < 0] = 0
# return euclidean pairwise distance matrix
return _np.sqrt(sq_dist + 1e-8)
def _np_rmsdist(true, pred, use_jax=True):
'''compute RMSD of distance matrices'''
_np = jnp if use_jax else np
t = _np_len_pw(true, use_jax=use_jax)
p = _np_len_pw(pred, use_jax=use_jax)
return _np.sqrt(_np.square(t-p).mean() + 1e-8)
def _np_kabsch(a, b, return_v=False, use_jax=True):
'''get alignment matrix for two sets of coodinates'''
_np = jnp if use_jax else np
ab = a.swapaxes(-1,-2) @ b
u, s, vh = _np.linalg.svd(ab, full_matrices=False)
flip = _np.linalg.det(u @ vh) < 0
u_ = _np.where(flip, -u[...,-1].T, u[...,-1].T).T
if use_jax: u = u.at[...,-1].set(u_)
else: u[...,-1] = u_
return u if return_v else (u @ vh)
def _np_rmsd(true, pred, use_jax=True):
'''compute RMSD of coordinates after alignment'''
_np = jnp if use_jax else np
p = true - true.mean(-2,keepdims=True)
q = pred - pred.mean(-2,keepdims=True)
p = p @ _np_kabsch(p, q, use_jax=use_jax)
return _np.sqrt(_np.square(p-q).sum(-1).mean(-1) + 1e-8)
def _np_norm(x, axis=-1, keepdims=True, eps=1e-8, use_jax=True):
'''compute norm of vector'''
_np = jnp if use_jax else np
return _np.sqrt(_np.square(x).sum(axis,keepdims=keepdims) + 1e-8)
def _np_len(a, b, use_jax=True):
'''given coordinates a-b, return length or distance'''
return _np_norm(a-b, use_jax=use_jax)
def _np_ang(a, b, c, use_acos=False, use_jax=True):
'''given coordinates a-b-c, return angle'''
_np = jnp if use_jax else np
norm = lambda x: _np_norm(x, use_jax=use_jax)
ba, bc = b-a, b-c
cos_ang = (ba * bc).sum(-1,keepdims=True) / (norm(ba) * norm(bc))
# note the derivative at acos(-1 or 1) is inf, to avoid nans we use cos(ang)
if use_acos: return _np.arccos(cos_ang)
else: return cos_ang
def _np_dih(a, b, c, d, use_atan2=False, standardize=False, use_jax=True):
'''given coordinates a-b-c-d, return dihedral'''
_np = jnp if use_jax else np
normalize = lambda x: x/_np_norm(x, use_jax=use_jax)
ab, bc, cd = normalize(a-b), normalize(b-c), normalize(c-d)
n1,n2 = _np.cross(ab, bc), _np.cross(bc, cd)
sin_ang = (_np.cross(n1, bc) * n2).sum(-1,keepdims=True)
cos_ang = (n1 * n2).sum(-1,keepdims=True)
if use_atan2:
return _np.arctan2(sin_ang, cos_ang)
else:
angs = _np.concatenate([sin_ang, cos_ang],-1)
if standardize: return normalize(angs)
else: return angs
def _np_extend(a,b,c, L,A,D, use_jax=True):
'''
given coordinates a-b-c,
c-d (L)ength, b-c-d (A)ngle, and a-b-c-d (D)ihedral
return 4th coordinate d
'''
_np = jnp if use_jax else np
normalize = lambda x: x/_np_norm(x, use_jax=use_jax)
bc = normalize(b-c)
n = normalize(_np.cross(b-a, bc))
return c + sum([L * _np.cos(A) * bc,
L * _np.sin(A) * _np.cos(D) * _np.cross(n, bc),
L * _np.sin(A) * _np.sin(D) * -n])
def _np_get_cb(N,CA,C, use_jax=True):
'''compute CB placement from N, CA, C'''
return _np_extend(C, N, CA, 1.522, 1.927, -2.143, use_jax=use_jax)
def _np_get_6D(all_atom_positions, all_atom_mask=None, use_jax=True):
'''get 6D features (see TrRosetta paper)'''
# get CB coordinate
atom_idx = {k:residue_constants.atom_order[k] for k in ["N","CA","C"]}
out = {k:all_atom_positions[...,i,:] for k,i in atom_idx.items()}
out["CB"] = _np_get_cb(**out, use_jax=use_jax)
if all_atom_mask is not None:
idx = np.fromiter(atom_idx.values(),int)
out["CB_mask"] = all_atom_mask[...,idx].prod(-1)
# get pairwise features
N,A,B = (out[k] for k in ["N","CA","CB"])
j = {"use_jax":use_jax}
out.update({"dist": _np_len_pw(B,**j),
"phi": _np_ang(A[...,:,None,:],B[...,:,None,:],B[...,None,:,:],**j),
"omega": _np_dih(A[...,:,None,:],B[...,:,None,:],B[...,None,:,:],A[...,None,:,:],**j),
"theta": _np_dih(N[...,:,None,:],A[...,:,None,:],B[...,:,None,:],B[...,None,:,:],**j),
})
return out
####################
# 6D loss (see TrRosetta paper)
####################
def _np_get_6D_loss(true, pred, mask=None, use_theta=True, use_dist=False, use_jax=True):
_np = jnp if use_jax else np
f = {"T":_np_get_6D(true, mask, use_jax=use_jax),
"P":_np_get_6D(pred, use_jax=use_jax)}
for k in f: f[k]["dist"] /= 10.0
keys = ["omega","phi"]
if use_theta: keys.append("theta")
if use_dist: keys.append("dist")
sq_diff = sum([_np.square(f["T"][k]-f["P"][k]).sum(-1) for k in keys])
mask = _np.ones(true.shape[0]) if mask is None else f["T"]["CB_mask"]
mask = mask[:,None] * mask[None,:]
loss = (sq_diff * mask).sum((-1,-2)) / mask.sum((-1,-2))
return _np.sqrt(loss + 1e-8).mean()
def get_6D_loss(batch, outputs, **kwargs):
true = batch["all_atom_positions"]
pred = outputs["structure_module"]["final_atom_positions"]
mask = batch["all_atom_mask"]
return _np_get_6D_loss(true, pred, mask, **kwargs)
#################################################################################
#################################################################################
#################################################################################
####################
# update sequence
####################
def soft_seq(seq_logits, temp=1.0, hard=True):
seq_soft = jax.nn.softmax(seq_logits / temp)
if hard:
seq_hard = jax.nn.one_hot(seq_soft.argmax(-1),20)
return jax.lax.stop_gradient(seq_hard - seq_soft) + seq_soft
else:
return seq_soft
def update_seq(seq, inputs, seq_1hot=None, seq_pssm=None, msa_input=None):
'''update the sequence features'''
if seq_1hot is None: seq_1hot = seq
if seq_pssm is None: seq_pssm = seq
msa_feat = jnp.zeros_like(inputs["msa_feat"]).at[...,0:20].set(seq_1hot).at[...,25:45].set(seq_pssm)
if seq.ndim == 3:
target_feat = jnp.zeros_like(inputs["target_feat"]).at[...,1:21].set(seq[0])
else:
target_feat = jnp.zeros_like(inputs["target_feat"]).at[...,1:21].set(seq)
inputs.update({"target_feat":target_feat,"msa_feat":msa_feat})
def update_aatype(aatype, inputs):
if jnp.issubdtype(aatype.dtype, jnp.integer):
inputs.update({"aatype":aatype,
"atom14_atom_exists":residue_constants.restype_atom14_mask[aatype],
"atom37_atom_exists":residue_constants.restype_atom37_mask[aatype],
"residx_atom14_to_atom37":residue_constants.restype_atom14_to_atom37[aatype],
"residx_atom37_to_atom14":residue_constants.restype_atom37_to_atom14[aatype]})
else:
restype_atom14_to_atom37 = jax.nn.one_hot(residue_constants.restype_atom14_to_atom37,37)
restype_atom37_to_atom14 = jax.nn.one_hot(residue_constants.restype_atom37_to_atom14,14)
inputs.update({"aatype":aatype,
"atom14_atom_exists":jnp.einsum("...a,am->...m", aatype, residue_constants.restype_atom14_mask),
"atom37_atom_exists":jnp.einsum("...a,am->...m", aatype, residue_constants.restype_atom37_mask),
"residx_atom14_to_atom37":jnp.einsum("...a,abc->...bc", aatype, restype_atom14_to_atom37),
"residx_atom37_to_atom14":jnp.einsum("...a,abc->...bc", aatype, restype_atom37_to_atom14)})
####################
# utils
####################
def pdb_to_string(pdb_file):
lines = []
for line in open(pdb_file,"r"):
if line[:6] == "HETATM" and line[17:20] == "MSE":
line = "ATOM "+line[6:17]+"MET"+line[20:]
if line[:4] == "ATOM":
lines.append(line)
return "".join(lines)
def save_pdb(outs, filename="tmp.pdb"):
seq = outs["seq"].argmax(-1)
while seq.ndim > 1: seq = seq[0]
b_factors = np.zeros_like(outs["outputs"]['final_atom_mask'])
p = protein.Protein(
aatype=seq,
atom_positions=outs["outputs"]["final_atom_positions"],
atom_mask=outs["outputs"]['final_atom_mask'],
residue_index=jnp.arange(len(seq))+1,
b_factors=b_factors)
pdb_lines = protein.to_pdb(p)
with open(filename, 'w') as f:
f.write(pdb_lines)
order_restype = {v: k for k, v in residue_constants.restype_order.items()}
idx_to_resname = dict((v,k) for k,v in residue_constants.resname_to_idx.items())
template_aa_map = np.eye(20)[[residue_constants.HHBLITS_AA_TO_ID[order_restype[i]] for i in range(20)]].T
###########################
# MISC
###########################
jalview_color_list = {"Clustal": ["#80a0f0","#f01505","#00ff00","#c048c0","#f08080","#00ff00","#c048c0","#f09048","#15a4a4","#80a0f0","#80a0f0","#f01505","#80a0f0","#80a0f0","#ffff00","#00ff00","#00ff00","#80a0f0","#15a4a4","#80a0f0"],
"Zappo": ["#ffafaf","#6464ff","#00ff00","#ff0000","#ffff00","#00ff00","#ff0000","#ff00ff","#6464ff","#ffafaf","#ffafaf","#6464ff","#ffafaf","#ffc800","#ff00ff","#00ff00","#00ff00","#ffc800","#ffc800","#ffafaf"],
"Taylor": ["#ccff00","#0000ff","#cc00ff","#ff0000","#ffff00","#ff00cc","#ff0066","#ff9900","#0066ff","#66ff00","#33ff00","#6600ff","#00ff00","#00ff66","#ffcc00","#ff3300","#ff6600","#00ccff","#00ffcc","#99ff00"],
"Hydrophobicity": ["#ad0052","#0000ff","#0c00f3","#0c00f3","#c2003d","#0c00f3","#0c00f3","#6a0095","#1500ea","#ff0000","#ea0015","#0000ff","#b0004f","#cb0034","#4600b9","#5e00a1","#61009e","#5b00a4","#4f00b0","#f60009","#0c00f3","#680097","#0c00f3"],
"Helix Propensity": ["#e718e7","#6f906f","#1be41b","#778877","#23dc23","#926d92","#ff00ff","#00ff00","#758a75","#8a758a","#ae51ae","#a05fa0","#ef10ef","#986798","#00ff00","#36c936","#47b847","#8a758a","#21de21","#857a85","#49b649","#758a75","#c936c9"],
"Strand Propensity": ["#5858a7","#6b6b94","#64649b","#2121de","#9d9d62","#8c8c73","#0000ff","#4949b6","#60609f","#ecec13","#b2b24d","#4747b8","#82827d","#c2c23d","#2323dc","#4949b6","#9d9d62","#c0c03f","#d3d32c","#ffff00","#4343bc","#797986","#4747b8"],
"Turn Propensity": ["#2cd3d3","#708f8f","#ff0000","#e81717","#a85757","#3fc0c0","#778888","#ff0000","#708f8f","#00ffff","#1ce3e3","#7e8181","#1ee1e1","#1ee1e1","#f60909","#e11e1e","#738c8c","#738c8c","#9d6262","#07f8f8","#f30c0c","#7c8383","#5ba4a4"],
"Buried Index": ["#00a35c","#00fc03","#00eb14","#00eb14","#0000ff","#00f10e","#00f10e","#009d62","#00d52a","#0054ab","#007b84","#00ff00","#009768","#008778","#00e01f","#00d52a","#00db24","#00a857","#00e619","#005fa0","#00eb14","#00b649","#00f10e"]}
###########################
# to be deprecated functions
###########################
def set_dropout(model_config, dropout=0.0):
model_config.model.embeddings_and_evoformer.evoformer.msa_row_attention_with_pair_bias.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.evoformer.triangle_attention_ending_node.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.evoformer.triangle_attention_starting_node.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.evoformer.triangle_multiplication_incoming.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.evoformer.triangle_multiplication_outgoing.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_attention_ending_node.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_attention_starting_node.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_multiplication_incoming.dropout_rate = dropout
model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_multiplication_outgoing.dropout_rate = dropout
model_config.model.heads.structure_module.dropout = dropout
return model_config
|