Spaces:
Running
on
T4
Running
on
T4
Simon Duerr
commited on
Commit
•
fd7bfb8
1
Parent(s):
0975cd6
add zenodo
Browse files
app.py
CHANGED
@@ -1237,7 +1237,13 @@ with proteinMPNN:
|
|
1237 |
gr.Markdown("# ProteinMPNN")
|
1238 |
gr.Markdown(
|
1239 |
"""This model takes as input a protein structure and based on its backbone predicts new sequences that will fold into that backbone.
|
1240 |
-
Optionally, we can run AlphaFold2 on the predicted sequence to check whether the predicted sequences adopt the same backbone
|
|
|
|
|
|
|
|
|
|
|
|
|
1241 |
"""
|
1242 |
)
|
1243 |
gr.Markdown("![](https://simonduerr.eu/ProteinMPNN.png)")
|
|
|
1237 |
gr.Markdown("# ProteinMPNN")
|
1238 |
gr.Markdown(
|
1239 |
"""This model takes as input a protein structure and based on its backbone predicts new sequences that will fold into that backbone.
|
1240 |
+
Optionally, we can run AlphaFold2 on the predicted sequence to check whether the predicted sequences adopt the same backbone.
|
1241 |
+
|
1242 |
+
If you use this space please cite the ProteinMPNN paper
|
1243 |
+
> J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan, B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, D. Baker, Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).
|
1244 |
+
and this webapp:
|
1245 |
+
> Simon L. Dürr. (2023). ProteinMPNN Gradio Webapp (v0.3). Zenodo. https://doi.org/10.5281/zenodo.7630417
|
1246 |
+
|
1247 |
"""
|
1248 |
)
|
1249 |
gr.Markdown("![](https://simonduerr.eu/ProteinMPNN.png)")
|