File size: 53,534 Bytes
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27510cd
227b78b
 
 
 
 
27510cd
227b78b
 
 
 
 
 
 
 
27510cd
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06343d0
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a69cf2
227b78b
1cb235a
227b78b
 
 
 
 
 
f88f685
227b78b
f88f685
227b78b
 
 
f88f685
227b78b
f88f685
227b78b
 
 
f88f685
227b78b
 
 
 
 
f88f685
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88f685
227b78b
 
64b65a1
f88f685
227b78b
 
f88f685
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b65a1
 
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f88f685
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
c8704c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
import copy
import re

import os.path

import torch
import sys

import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import matplotlib.pyplot as plt
import plotly.graph_objects as go

import tempfile
import requests
from moleculekit.molecule import Molecule

sys.path.append("/home/user/app/ProteinMPNN/vanilla_proteinmpnn")
# this is for local
sys.path.append(os.path.join(os.getcwd(), "ProteinMPNN/vanilla_proteinmpnn"))


def make_tied_positions_for_homomers(pdb_dict_list):
    my_dict = {}
    for result in pdb_dict_list:
        all_chain_list = sorted(
            [item[-1:] for item in list(result) if item[:9] == "seq_chain"]
        )  # A, B, C, ...
        tied_positions_list = []
        chain_length = len(result[f"seq_chain_{all_chain_list[0]}"])
        for i in range(1, chain_length + 1):
            temp_dict = {}
            for j, chain in enumerate(all_chain_list):
                temp_dict[chain] = [i]  # needs to be a list
            tied_positions_list.append(temp_dict)
        my_dict[result["name"]] = tied_positions_list
    return my_dict


def align_structures(pdb1, pdb2, index):
    """Take two structure and superimpose pdb1 on pdb2"""
    import Bio.PDB
    import subprocess

    pdb_parser = Bio.PDB.PDBParser(QUIET=True)
    # Get the structures
    ref_structure = pdb_parser.get_structure("ref", pdb1)
    sample_structure = pdb_parser.get_structure("sample", pdb2)

    sample_structure_ca = [
        atom for atom in sample_structure.get_atoms() if atom.name == "CA"
    ]
    plddts = [atom.get_bfactor() for atom in sample_structure_ca]

    aligner = Bio.PDB.CEAligner()
    aligner.set_reference(ref_structure)
    aligner.align(sample_structure)

    io = Bio.PDB.PDBIO()
    io.set_structure(ref_structure)
    hash = os.path.splitext(os.path.basename(pdb2))[0]
    io.save(f"outputs/{hash}_ref_{index}.pdb")
    io.set_structure(sample_structure)
    io.save(f"outputs/{hash}_align_{index}.pdb")
    # Doing this to get around biopython CEALIGN bug
    # subprocess.call("pymol -c -Q -r cealign.pml", shell=True)

    return (
        aligner.rms,
        f"outputs/{hash}_ref_{index}.pdb",
        f"outputs/{hash}_align_{index}.pdb",
        plddts,
    )


if not os.path.exists("/home/user/app/ProteinMPNN/"):
    path_to_model_weights = os.path.join(
        os.getcwd(), "ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights"
    )
    is_local = True
else:
    path_to_model_weights = (
        "/home/user/app/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights"
    )
    is_local = False


if is_local:
    print("Running locally")
    from transformers import AutoTokenizer, EsmForProteinFolding


def setup_proteinmpnn(model_name="v_48_020", backbone_noise=0.00):
    from protein_mpnn_utils import (
        loss_nll,
        loss_smoothed,
        gather_edges,
        gather_nodes,
        gather_nodes_t,
        cat_neighbors_nodes,
        _scores,
        _S_to_seq,
        tied_featurize,
        parse_PDB,
    )
    from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN

    device = torch.device(
        "cpu"
    )  # torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu") #fix for memory issues
    # ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030, v_32_002, v_32_010; v_32_020, v_32_030; v_48_010=version with 48 edges 0.10A noise
    # Standard deviation of Gaussian noise to add to backbone atoms
    hidden_dim = 128
    num_layers = 3
    model_folder_path = path_to_model_weights
    if model_folder_path[-1] != "/":
        model_folder_path = model_folder_path + "/"
    checkpoint_path = model_folder_path + f"{model_name}.pt"

    checkpoint = torch.load(checkpoint_path, map_location=device)

    noise_level_print = checkpoint["noise_level"]

    model = ProteinMPNN(
        num_letters=21,
        node_features=hidden_dim,
        edge_features=hidden_dim,
        hidden_dim=hidden_dim,
        num_encoder_layers=num_layers,
        num_decoder_layers=num_layers,
        augment_eps=backbone_noise,
        k_neighbors=checkpoint["num_edges"],
    )
    model.to(device)
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()
    return model, device


def get_pdb(pdb_code="", filepath=""):
    if pdb_code is None or pdb_code == "":
        try:
            return filepath.name
        except AttributeError as e:
            return None
    else:
        os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb")
        return f"{pdb_code}.pdb"


def preprocess_mol(pdb_code="", filepath=""):
    if pdb_code is None or pdb_code == "":
        try:
            mol = Molecule(filepath.name)
        except AttributeError as e:
            return None
    else:
        mol = Molecule(pdb_code)
    mol.write("original.pdb")
    # clean messy files and only include protein itself
    mol.filter("protein")
    # renumber using moleculekit 0...len(protein)
    df = mol.renumberResidues(returnMapping=True)
    # add proteinMPNN index col which used 1..len(chain), 1...len(chain)
    indexes = []
    for chain, g in df.groupby("chain"):
        j = 1
        for i, row in g.iterrows():
            indexes.append(j)
            j += 1
    df["proteinMPNN_index"] = indexes
    mol.write("cleaned.pdb")
    return "cleaned.pdb", df


def assign_sasa(mol):
    from moleculekit.projections.metricsasa import MetricSasa

    metr = MetricSasa(mode="residue", filtersel="protein")
    sasaR = metr.project(mol)[0]
    is_prot = mol.atomselect("protein")
    resids = pd.DataFrame.from_dict({"resid": mol.resid, "is_prot": is_prot})
    new_masses = []
    i_without_non_prot = 0
    for i, g in resids.groupby((resids["resid"].shift() != resids["resid"]).cumsum()):
        if g["is_prot"].unique()[0] == True:
            g["sasa"] = sasaR[i_without_non_prot]
            i_without_non_prot += 1
        else:
            g["sasa"] = 0
        new_masses.extend(list(g.sasa))
    return np.array(new_masses)


def process_atomsel(atomsel):
    """everything lowercase and replace some keywords not relevant for protein design"""
    atomsel = re.sub("sasa", "mass", atomsel, flags=re.I)
    atomsel = re.sub("plddt", "beta", atomsel, flags=re.I)
    return atomsel


def make_fixed_positions_dict(atomsel, residue_index_df):
    # we use the uploaded file for the selection
    mol = Molecule("original.pdb")
    # use index for selection as resids will change

    # set sasa to 0 for all non protein atoms (all non protein atoms are deleted later)
    mol.masses = assign_sasa(mol)
    print(mol.masses.shape)
    print(assign_sasa(mol).shape)
    atomsel = process_atomsel(atomsel)
    selected_residues = mol.get("index", atomsel)

    # clean up
    mol.filter("protein")
    mol.renumberResidues()
    # based on selected index now get resids
    selected_residues = [str(i) for i in selected_residues]
    if len(selected_residues) == 0:
        return None, []
    selected_residues_str = " ".join(selected_residues)
    selected_residues = set(mol.get("resid", sel=f"index {selected_residues_str}"))

    # use the proteinMPNN index nomenclature to assemble fixed_positions_dict
    fixed_positions_df = residue_index_df[
        residue_index_df["new_resid"].isin(selected_residues)
    ]

    chains = set(mol.get("chain", sel="all"))
    fixed_position_dict = {"cleaned": {}}
    # store the selected residues in a list for the visualization later with cleaned.pdb
    selected_residues = list(fixed_positions_df["new_resid"])

    for c in chains:
        fixed_position_dict["cleaned"][c] = []

    for i, row in fixed_positions_df.iterrows():
        fixed_position_dict["cleaned"][row["chain"]].append(row["proteinMPNN_index"])
    return fixed_position_dict, selected_residues


def update(
    inp,
    file,
    designed_chain,
    fixed_chain,
    homomer,
    num_seqs,
    sampling_temp,
    model_name,
    backbone_noise,
    atomsel,
):
    from protein_mpnn_utils import (
        loss_nll,
        loss_smoothed,
        gather_edges,
        gather_nodes,
        gather_nodes_t,
        cat_neighbors_nodes,
        _scores,
        _S_to_seq,
        tied_featurize,
        parse_PDB,
    )
    from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN

    # pdb_path = get_pdb(pdb_code=inp, filepath=file)

    pdb_path, mol_index = preprocess_mol(pdb_code=inp, filepath=file)

    if pdb_path == None:
        return "Error processing PDB"

    model, device = setup_proteinmpnn(
        model_name=model_name, backbone_noise=backbone_noise
    )

    if designed_chain == "":
        designed_chain_list = []
    else:
        designed_chain_list = re.sub("[^A-Za-z]+", ",", designed_chain).split(",")

    if fixed_chain == "":
        fixed_chain_list = []
    else:
        fixed_chain_list = re.sub("[^A-Za-z]+", ",", fixed_chain).split(",")

    chain_list = list(set(designed_chain_list + fixed_chain_list))
    num_seq_per_target = num_seqs
    save_score = 0  # 0 for False, 1 for True; save score=-log_prob to npy files
    save_probs = (
        0  # 0 for False, 1 for True; save MPNN predicted probabilites per position
    )
    score_only = 0  # 0 for False, 1 for True; score input backbone-sequence pairs
    conditional_probs_only = 0  # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)
    conditional_probs_only_backbone = 0  # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)

    batch_size = 1  # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory
    max_length = 20000  # Max sequence length

    out_folder = "."  # Path to a folder to output sequences, e.g. /home/out/
    jsonl_path = ""  # Path to a folder with parsed pdb into jsonl
    omit_AAs = "X"  # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.

    pssm_multi = 0.0  # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions
    pssm_threshold = 0.0  # A value between -inf + inf to restric per position AAs
    pssm_log_odds_flag = 0  # 0 for False, 1 for True
    pssm_bias_flag = 0  # 0 for False, 1 for True

    folder_for_outputs = out_folder

    NUM_BATCHES = num_seq_per_target // batch_size
    BATCH_COPIES = batch_size
    temperatures = [sampling_temp]
    omit_AAs_list = omit_AAs
    alphabet = "ACDEFGHIKLMNPQRSTVWYX"

    omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)

    chain_id_dict = None
    if atomsel == "":
        fixed_positions_dict, selected_residues = None, []
    else:
        fixed_positions_dict, selected_residues = make_fixed_positions_dict(
            atomsel, mol_index
        )

    pssm_dict = None
    omit_AA_dict = None
    bias_AA_dict = None

    bias_by_res_dict = None
    bias_AAs_np = np.zeros(len(alphabet))

    ###############################################################
    pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list)
    dataset_valid = StructureDatasetPDB(
        pdb_dict_list, truncate=None, max_length=max_length
    )
    if homomer:
        tied_positions_dict = make_tied_positions_for_homomers(pdb_dict_list)
    else:
        tied_positions_dict = None

    chain_id_dict = {}
    chain_id_dict[pdb_dict_list[0]["name"]] = (designed_chain_list, fixed_chain_list)
    with torch.no_grad():
        for ix, prot in enumerate(dataset_valid):
            score_list = []
            all_probs_list = []
            all_log_probs_list = []
            S_sample_list = []
            batch_clones = [copy.deepcopy(prot) for i in range(BATCH_COPIES)]
            (
                X,
                S,
                mask,
                lengths,
                chain_M,
                chain_encoding_all,
                chain_list_list,
                visible_list_list,
                masked_list_list,
                masked_chain_length_list_list,
                chain_M_pos,
                omit_AA_mask,
                residue_idx,
                dihedral_mask,
                tied_pos_list_of_lists_list,
                pssm_coef,
                pssm_bias,
                pssm_log_odds_all,
                bias_by_res_all,
                tied_beta,
            ) = tied_featurize(
                batch_clones,
                device,
                chain_id_dict,
                fixed_positions_dict,
                omit_AA_dict,
                tied_positions_dict,
                pssm_dict,
                bias_by_res_dict,
            )
            pssm_log_odds_mask = (
                pssm_log_odds_all > pssm_threshold
            ).float()  # 1.0 for true, 0.0 for false
            name_ = batch_clones[0]["name"]

            randn_1 = torch.randn(chain_M.shape, device=X.device)
            log_probs = model(
                X,
                S,
                mask,
                chain_M * chain_M_pos,
                residue_idx,
                chain_encoding_all,
                randn_1,
            )
            mask_for_loss = mask * chain_M * chain_M_pos
            scores = _scores(S, log_probs, mask_for_loss)
            native_score = scores.cpu().data.numpy()
            message = ""
            seq_list = []
            seq_recovery = []
            seq_score = []
            for temp in temperatures:
                for j in range(NUM_BATCHES):
                    randn_2 = torch.randn(chain_M.shape, device=X.device)
                    if tied_positions_dict == None:
                        sample_dict = model.sample(
                            X,
                            randn_2,
                            S,
                            chain_M,
                            chain_encoding_all,
                            residue_idx,
                            mask=mask,
                            temperature=temp,
                            omit_AAs_np=omit_AAs_np,
                            bias_AAs_np=bias_AAs_np,
                            chain_M_pos=chain_M_pos,
                            omit_AA_mask=omit_AA_mask,
                            pssm_coef=pssm_coef,
                            pssm_bias=pssm_bias,
                            pssm_multi=pssm_multi,
                            pssm_log_odds_flag=bool(pssm_log_odds_flag),
                            pssm_log_odds_mask=pssm_log_odds_mask,
                            pssm_bias_flag=bool(pssm_bias_flag),
                            bias_by_res=bias_by_res_all,
                        )
                        S_sample = sample_dict["S"]
                    else:
                        sample_dict = model.tied_sample(
                            X,
                            randn_2,
                            S,
                            chain_M,
                            chain_encoding_all,
                            residue_idx,
                            mask=mask,
                            temperature=temp,
                            omit_AAs_np=omit_AAs_np,
                            bias_AAs_np=bias_AAs_np,
                            chain_M_pos=chain_M_pos,
                            omit_AA_mask=omit_AA_mask,
                            pssm_coef=pssm_coef,
                            pssm_bias=pssm_bias,
                            pssm_multi=pssm_multi,
                            pssm_log_odds_flag=bool(pssm_log_odds_flag),
                            pssm_log_odds_mask=pssm_log_odds_mask,
                            pssm_bias_flag=bool(pssm_bias_flag),
                            tied_pos=tied_pos_list_of_lists_list[0],
                            tied_beta=tied_beta,
                            bias_by_res=bias_by_res_all,
                        )
                        # Compute scores
                        S_sample = sample_dict["S"]
                    log_probs = model(
                        X,
                        S_sample,
                        mask,
                        chain_M * chain_M_pos,
                        residue_idx,
                        chain_encoding_all,
                        randn_2,
                        use_input_decoding_order=True,
                        decoding_order=sample_dict["decoding_order"],
                    )
                    mask_for_loss = mask * chain_M * chain_M_pos
                    scores = _scores(S_sample, log_probs, mask_for_loss)
                    scores = scores.cpu().data.numpy()
                    all_probs_list.append(sample_dict["probs"].cpu().data.numpy())
                    all_log_probs_list.append(log_probs.cpu().data.numpy())
                    S_sample_list.append(S_sample.cpu().data.numpy())
                    for b_ix in range(BATCH_COPIES):
                        masked_chain_length_list = masked_chain_length_list_list[b_ix]
                        masked_list = masked_list_list[b_ix]
                        seq_recovery_rate = torch.sum(
                            torch.sum(
                                torch.nn.functional.one_hot(S[b_ix], 21)
                                * torch.nn.functional.one_hot(S_sample[b_ix], 21),
                                axis=-1,
                            )
                            * mask_for_loss[b_ix]
                        ) / torch.sum(mask_for_loss[b_ix])
                        seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])
                        score = scores[b_ix]
                        score_list.append(score)
                        native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])
                        if b_ix == 0 and j == 0 and temp == temperatures[0]:
                            start = 0
                            end = 0
                            list_of_AAs = []
                            for mask_l in masked_chain_length_list:
                                end += mask_l
                                list_of_AAs.append(native_seq[start:end])
                                start = end
                            native_seq = "".join(
                                list(np.array(list_of_AAs)[np.argsort(masked_list)])
                            )
                            l0 = 0
                            for mc_length in list(
                                np.array(masked_chain_length_list)[
                                    np.argsort(masked_list)
                                ]
                            )[:-1]:
                                l0 += mc_length
                                native_seq = native_seq[:l0] + "/" + native_seq[l0:]
                                l0 += 1
                            sorted_masked_chain_letters = np.argsort(
                                masked_list_list[0]
                            )
                            print_masked_chains = [
                                masked_list_list[0][i]
                                for i in sorted_masked_chain_letters
                            ]
                            sorted_visible_chain_letters = np.argsort(
                                visible_list_list[0]
                            )
                            print_visible_chains = [
                                visible_list_list[0][i]
                                for i in sorted_visible_chain_letters
                            ]
                            native_score_print = np.format_float_positional(
                                np.float32(native_score.mean()),
                                unique=False,
                                precision=4,
                            )
                            line = ">{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\n{}\n".format(
                                name_,
                                native_score_print,
                                print_visible_chains,
                                print_masked_chains,
                                model_name,
                                native_seq,
                            )
                            message += f"{line}\n"
                        start = 0
                        end = 0
                        list_of_AAs = []
                        for mask_l in masked_chain_length_list:
                            end += mask_l
                            list_of_AAs.append(seq[start:end])
                            start = end

                        seq = "".join(
                            list(np.array(list_of_AAs)[np.argsort(masked_list)])
                        )
                        # add non designed chains to predicted sequence
                        l0 = 0
                        for mc_length in list(
                            np.array(masked_chain_length_list)[np.argsort(masked_list)]
                        )[:-1]:
                            l0 += mc_length
                            seq = seq[:l0] + "/" + seq[l0:]
                            l0 += 1
                        score_print = np.format_float_positional(
                            np.float32(score), unique=False, precision=4
                        )
                        seq_rec_print = np.format_float_positional(
                            np.float32(seq_recovery_rate.detach().cpu().numpy()),
                            unique=False,
                            precision=4,
                        )
                        chain_s = ""
                        if len(visible_list_list[0]) > 0:
                            chain_M_bool = chain_M.bool()
                            not_designed = _S_to_seq(S[b_ix], ~chain_M_bool[b_ix])

                            labels = (
                                chain_encoding_all[b_ix][~chain_M_bool[b_ix]]
                                .detach()
                                .cpu()
                                .numpy()
                            )

                            for c in set(labels):
                                chain_s += ":"
                                nd_mask = labels == c
                                for i, x in enumerate(not_designed):
                                    if nd_mask[i]:
                                        chain_s += x
                        seq_recovery.append(seq_rec_print)
                        seq_score.append(score_print)
                        line = (
                            ">T={}, sample={}, score={}, seq_recovery={}\n{}\n".format(
                                temp, b_ix, score_print, seq_rec_print, seq
                            )
                        )
                        seq_list.append(seq + chain_s)
                        message += f"{line}\n"
    if fixed_positions_dict != None:
        message += f"\nfixed positions:* {fixed_positions_dict['cleaned']} \n\n*uses CHAIN:[1..len(chain)] residue numbering"
    # somehow sequences still contain X, remove again
    for i, x in enumerate(seq_list):
        for aa in omit_AAs:
            seq_list[i] = x.replace(aa, "")
    all_probs_concat = np.concatenate(all_probs_list)
    all_log_probs_concat = np.concatenate(all_log_probs_list)
    np.savetxt("all_probs_concat.csv", all_probs_concat.mean(0).T, delimiter=",")
    np.savetxt(
        "all_log_probs_concat.csv",
        np.exp(all_log_probs_concat).mean(0).T,
        delimiter=",",
    )
    S_sample_concat = np.concatenate(S_sample_list)
    fig = px.imshow(
        np.exp(all_log_probs_concat).mean(0).T,
        labels=dict(x="positions", y="amino acids", color="probability"),
        y=list(alphabet),
        template="simple_white",
    )
    fig.update_xaxes(side="top")

    fig_tadjusted = px.imshow(
        all_probs_concat.mean(0).T,
        labels=dict(x="positions", y="amino acids", color="probability"),
        y=list(alphabet),
        template="simple_white",
    )

    fig_tadjusted.update_xaxes(side="top")
    seq_dict = {"seq_list": seq_list, "recovery": seq_recovery, "seq_score": seq_score}
    mol = structure_pred(seq_dict, pdb_path, selected_residues)
    print(seq_list)
    return (
        message,
        fig,
        fig_tadjusted,
        gr.File.update(value="all_log_probs_concat.csv", visible=True),
        gr.File.update(value="all_probs_concat.csv", visible=True),
        pdb_path,
        gr.Dropdown.update(choices=seq_list, value=seq_list[0], interactive=True),
        selected_residues,
        seq_dict,
        mol,
    )


def updateseq(seq, seq_dict, pdb_path, selected_residues):
    # find index of seq in seq_dict

    seq_list = seq_dict["seq_list"]
    seq_index = seq_list.index(seq)
    print(seq, seq_index)
    mol = structure_pred(seq_dict, pdb_path, selected_residues, index=seq_index)
    return mol


from transformers.models.esm.openfold_utils.protein import to_pdb, Protein as OFProtein
from transformers.models.esm.openfold_utils.feats import atom14_to_atom37


def convert_outputs_to_pdb(outputs):
    final_atom_positions = atom14_to_atom37(outputs["positions"][-1], outputs)
    outputs = {k: v.to("cpu").numpy() for k, v in outputs.items()}
    final_atom_positions = final_atom_positions.cpu().numpy()
    final_atom_mask = outputs["atom37_atom_exists"]
    pdbs = []
    for i in range(outputs["aatype"].shape[0]):
        aa = outputs["aatype"][i]
        pred_pos = final_atom_positions[i]
        mask = final_atom_mask[i]
        resid = outputs["residue_index"][i] + 1
        pred = OFProtein(
            aatype=aa,
            atom_positions=pred_pos,
            atom_mask=mask,
            residue_index=resid,
            b_factors=outputs["plddt"][i],
            chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None,
        )
        pdbs.append(to_pdb(pred))
    return pdbs


def get_esmfold_local(sequence):

    filename = "outputs/" + hashlib.md5(str.encode(sequence)).hexdigest() + ".pdb"

    if not os.path.exists(filename):
        tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
        model = EsmForProteinFolding.from_pretrained(
            "facebook/esmfold_v1", low_cpu_mem_usage=True
        )

        model = model.cuda()
        model.esm = model.esm.half()
        import torch

        torch.backends.cuda.matmul.allow_tf32 = True
        model.trunk.set_chunk_size(64)

        position_id_offsets = []
        linker_mask = []
        for i, s in enumerate(sequence.split("/")):
            linker = 25 if i < sequence.count("/") else 0
            offsets = [i * 512] * (len(s) + linker)
            linker_mask.extend([1] * len(s) + [0] * linker)
            position_id_offsets.extend(offsets)
        sequence = sequence.replace("/", "G" * 25)
        tokenized = tokenizer([sequence], return_tensors="pt", add_special_tokens=False)
        with torch.no_grad():
            position_ids = torch.arange(len(sequence), dtype=torch.long)
            position_ids = position_ids + torch.torch.LongTensor(position_id_offsets)

        linker_mask = torch.Tensor(linker_mask).unsqueeze(1)
        tokenized["position_ids"] = position_ids.unsqueeze(0)
        tokenized = {key: tensor.cuda() for key, tensor in tokenized.items()}
        with torch.no_grad():
            output = model(**tokenized)

        output["atom37_atom_exists"] = output["atom37_atom_exists"] * linker_mask.to(
            output["atom37_atom_exists"].device
        )
        pdb = convert_outputs_to_pdb(output)

        with open(filename, "w+") as f:
            f.write("".join(pdb))
        print("local prediction", filename)
    else:
        print("prediction already on disk")
    return filename


def structure_pred(seq_dict, pdb, selectedResidues, index=0):
    allSeqs = seq_dict["seq_list"]
    lenSeqs = len(allSeqs)
    if len(allSeqs[index]) > 400:
        return """
        <div class="p-4 mb-4 text-sm text-yellow-700 bg-orange-50 rounded-lg" role="alert">
        <span class="font-medium">Sorry!</span> Currently only small proteins <400 aa can be predicted with the web api of ESMFold</div>
        """
    if "/" in allSeqs[index] and not is_local:
        return """
        <div class="p-4 mb-4 text-sm text-yellow-700 bg-orange-50 rounded-lg" role="alert">
        <span class="font-medium">Sorry!</span> Sequence is multimeric and no structure prediction is run. Use local copy of ESMFold to predict.</div>
        """
    i = 0
    sequences = {}
    if is_local:
        pdb_file = get_esmfold_local(allSeqs[index])
    else:
        pdb_file = get_esmfold(allSeqs[index])

    rms, input_pdb, aligned_pdb, plddts = align_structures(pdb, pdb_file, index)
    sequences[i] = {
        "Seq": index,
        "RMSD": f"{rms:.2f}",
        "Score": seq_dict["seq_score"][i],
        "Recovery": seq_dict["recovery"][i],
        "Mean pLDDT": f"{np.mean(plddts):.4f}",
    }

    num_res = len(allSeqs[index])
    return molecule(
        input_pdb,
        aligned_pdb,
        lenSeqs,
        num_res,
        selectedResidues,
        allSeqs,
        sequences,
    )


def read_mol(molpath):
    with open(molpath, "r") as fp:
        lines = fp.readlines()
    mol = ""
    for l in lines:
        mol += l
    return mol


def molecule(
    input_pdb, aligned_pdb, lenSeqs, num_res, selectedResidues, allSeqs, sequences
):
    print("mol updated")
    print("filenames", input_pdb, aligned_pdb)
    mol = read_mol(input_pdb)
    options = ""
    pred_mol = "["
    seqdata = "{"
    selected = "selected"
    for i in range(1):  # lenSeqs):
        seqdata += (
            str(sequences[i]["Seq"])
            + ': { "score": '
            + sequences[i]["Score"]
            + ', "rmsd": '
            + sequences[i]["RMSD"]
            + ', "recovery": '
            + sequences[i]["Recovery"]
            + ', "plddt": '
            + sequences[i]["Mean pLDDT"]
            + ', "seq":"'
            + allSeqs[i]
            + '"}'
        )

        pred_mol += f"`{read_mol(aligned_pdb)}`"
        selected = ""
        # if i != lenSeqs - 1:
        #     pred_mol += ","
        #     seqdata += ","
    pred_mol += "]"
    seqdata += "}"

    x = (
        """<!DOCTYPE html>
        <html>
        <head>    
    <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
     <link rel="stylesheet" href="https://unpkg.com/flowbite@1.4.5/dist/flowbite.min.css" />
    <style>
    body{
        font-family:sans-serif
    }
    .mol-container {
    width: 100%;
    height: 700px;
    position: relative;
    }
    .space-x-2 > * + *{
        margin-left: 0.5rem;
    }
    .p-1{
        padding:0.5rem;
    }
    .w-4{
        width:1rem;
    }
    .h-4{
        height:1rem;
    }
    .mt-4{
        margin-top:1rem;
    }
    .mol-container select{
        background-image:None;
    }
    </style>
    <script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
    </head>
    <body>
    <div class="font-mono bg-gray-100 py-3 px-2  font-sm rounded">
        <code>> seq <span id="id"></span>, score <span id="score"></span>, RMSD <span id="seqrmsd"></span>, Recovery
            <span id="recovery"></span>, pLDDT <span id="plddt"></span></code><br>
        <p id="seqText" class="max-w-4xl font-xs block" style="word-break: break-all;">

        </p>
    </div>
    <div id="container" class="mol-container"></div>
    <div class="flex items-center">
        <div class="px-4 pt-2">
        <label for="sidechain" class="relative inline-flex items-center mb-4 cursor-pointer ">
            <input  id="sidechain" type="checkbox" class="sr-only peer">
            <div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div>
            <span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show side chains</span>
          </label>
        </div>
        <div class="px-4 pt-2">
        <label for="startstructure" class="relative inline-flex items-center mb-4 cursor-pointer ">
            <input  id="startstructure" type="checkbox" class="sr-only peer" checked>
            <div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div>
            <span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show input structure</span>
          </label>
        </div>
        <button type="button" class="text-gray-900 bg-white hover:bg-gray-100 border border-gray-200 focus:ring-4 focus:outline-none focus:ring-gray-100 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-600 dark:bg-gray-800 dark:border-gray-700 dark:text-white dark:hover:bg-gray-700 mr-2 mb-2" id="download">
                    <svg class="w-6 h-6 mr-2 -ml-1" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 16v1a3 3 0 003 3h10a3 3 0 003-3v-1m-4-4l-4 4m0 0l-4-4m4 4V4"></path></svg>
                    Download predicted structure
                  </button>
            </div>       
            <div class="text-sm">
            <div> RMSD ESMFold vs. native: <span id="rmsd"></span> Å computed using CEAlign on the aligned fragment</div>
                                    </div>
            <div class="text-sm flex items-start">
                <div class="w-1/2">
                        
                            <div class="font-medium mt-4 flex items-center space-x-2"><b>AF2 model of redesigned sequence</b></div>
                            <div>ESMFold model confidence:</div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(0, 83, 214);">&nbsp;</span><span class="legendlabel">Very high
                                    (pLDDT &gt; 90)</span></div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(101, 203, 243);">&nbsp;</span><span class="legendlabel">Confident
                                    (90 &gt; pLDDT &gt; 70)</span></div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(255, 219, 19);">&nbsp;</span><span class="legendlabel">Low (70 &gt;
                                    pLDDT &gt; 50)</span></div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color: rgb(255, 125, 69);">&nbsp;</span><span class="legendlabel">Very low
                                    (pLDDT &lt; 50)</span></div>
                            <div class="row column legendDesc"> ESMFold produces a per-residue confidence
                                score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.
                            </div>
                        </div>
                        <div class="w-1/2">
                            <div class="font-medium mt-4 flex items-center space-x-2"><b>Input structure </b><span class="w-4 h-4 bg-gray-300 inline-flex" ></span></div>
                            
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4" style="background-color:hotpink" >&nbsp;</span><span class="legendlabel">Fixed positions</span></div>

                        </div>
                    </div>
            <script>

              function drawStructures(i, selectedResidues) {
            $("#rmsd").text(seqs[i]["rmsd"])
            $("#seqText").text(seqs[i]["seq"])
            $("#seqrmsd").text(seqs[i]["rmsd"])
            $("#id").text(i)
            $("#score").text(seqs[i]["score"])
            $("#recovery").text(seqs[i]["recovery"])
            $("#plddt").text(seqs[i]["plddt"])

            viewer = $3Dmol.createViewer(element, config);
            viewer.addModel(data[0], "pdb");
            viewer.addModel(pdb, "pdb");



            viewer.getModel(1).setStyle({}, { cartoon: { colorscheme: { prop: "resi", map: colors } } })
            viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } });
            viewer.zoomTo();
            viewer.render();
            viewer.zoom(0.8, 2000);
            viewer.getModel(0).setHoverable({}, true,
                function (atom, viewer, event, container) {
                    if (!atom.label) {
                        atom.label = viewer.addLabel(atom.resn + atom.resi + " pLDDT=" + atom.b, { position: atom, backgroundColor: "mintcream", fontColor: "black" });
                    }
                },
                function (atom, viewer) {
                    if (atom.label) {
                        viewer.removeLabel(atom.label);
                        delete atom.label;
                    }
                }
            );
        }
        let viewer = null;
        let voldata = null;
        let element = null;
        let config = null;
        let currentIndex = """
        + str(sequences[i]["Seq"])
        + """;
            let seqs = """
        + seqdata
        + """
               let data = """
        + pred_mol
        + """  
                let pdb = `"""
        + mol
        + """`  
         var selectedResidues = """
        + f"{selectedResidues}"
        + """
                //AlphaFold code from https://gist.github.com/piroyon/30d1c1099ad488a7952c3b21a5bebc96
                let colorAlpha = function (atom) {
                    if (atom.b < 0.50) {
                        return "OrangeRed";
                    } else if (atom.b < 0.70) {
                        return "Gold";
                    } else if (atom.b < 0.90) {
                        return "MediumTurquoise";
                    } else {
                        return "Blue";
                    }
                };
               
                let colors = {}
                for (let i=0; i<"""
        + str(num_res)
        + """;i++){
                if (selectedResidues.includes(i)){
                    colors[i]="hotpink"
                }else{
                    colors[i]="lightgray"
                }}

                let colorFixedSidechain = function(atom){
                                if (selectedResidues.includes(atom.resi)){
                                    return "hotpink"
                                }else if (atom.elem == "O"){
                                    return "red"
                                }else if (atom.elem == "N"){
                                    return "blue"
                                }else if (atom.elem == "S"){
                                    return "yellow"
                                }else{
                                    return "lightgray"
                                }
                            }

             $(document).ready(function () {
                element = $("#container");
                config = { backgroundColor: "white" };
                //viewer.ui.initiateUI();
 
                drawStructures(currentIndex, selectedResidues)
                $("#sidechain").change(function () {
                    if (this.checked) {
                        BB = ["C", "O", "N"]
                        
                        if ($("#startstructure").prop("checked")) {
                            viewer.getModel(0).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }});
                            viewer.getModel(1).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorfunc:colorFixedSidechain, radius: 0.3}, cartoon: {colorscheme:{prop:"resi",map:colors} }});
                        }else{
                            viewer.getModel(0).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }});
                            viewer.getModel(1).setStyle();                        
                        }
                        
                        viewer.render()
                    } else {
                        if ($("#startstructure").prop("checked")) {
                        viewer.getModel(0).setStyle({cartoon: { colorfunc: colorAlpha }});
                        viewer.getModel(1).setStyle({cartoon: {colorscheme:{prop:"resi",map:colors} }});
                        }else{
                            viewer.getModel(0).setStyle({cartoon: { colorfunc: colorAlpha }});
                            viewer.getModel(1).setStyle();
                            }
                        viewer.render()
                    }
                });
                $("#seq").change(function () {
                    drawStructures(this.value, selectedResidues)
                    currentIndex = this.value
                    $("#sidechain").prop( "checked", false );
                    $("#startstructure").prop( "checked", true );
                });
                $("#startstructure").change(function () {
                    if (this.checked) {
                         $("#sidechain").prop( "checked", false );
                       viewer.getModel(1).setStyle({},{cartoon: {colorscheme:{prop:"resi",map:colors} } })
                       viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } });
                       viewer.render()
                    } else {
                        $("#sidechain").prop( "checked", false );
                       viewer.getModel(1).setStyle({},{})
                       viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } });
                        viewer.render()
                    }
                });
                $("#download").click(function () {
                    download("outputs/esm_fold_prediction_"+currentIndex+".pdb", data[0]);
                })
        });
        function download(filename, text) {
            var element = document.createElement("a");
            element.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text));
            element.setAttribute("download", filename);
            element.style.display = "none";
            document.body.appendChild(element);
            element.click();
            document.body.removeChild(element);
        }
        </script>
        </body></html>"""
    )

    return f"""<iframe style="width: 100%; height: 1300px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


def set_examples(example):
    (
        label,
        inp,
        designed_chain,
        fixed_chain,
        homomer,
        num_seqs,
        sampling_temp,
        atomsel,
    ) = example
    return [
        label,
        inp,
        designed_chain,
        fixed_chain,
        homomer,
        gr.Slider.update(value=num_seqs),
        gr.Radio.update(value=sampling_temp),
        atomsel,
    ]


import hashlib


def get_esmfold(sequence):
    headers = {
        "Content-Type": "application/x-www-form-urlencoded",
    }
    sequence = sequence.replace("/", ":")
    filename = "outputs/" + hashlib.md5(str.encode(sequence)).hexdigest() + ".pdb"

    if not os.path.exists(filename):
        response = requests.post(
            "https://api.esmatlas.com/foldSequence/v1/pdb/",
            headers=headers,
            data=sequence,
            verify=False
        )

        name = sequence[:3] + sequence[-3:]
        pdb_string = response.content.decode("utf-8")

        with open(filename, "w+") as f:
            f.write(pdb_string)
        print("retrieved prediction", filename)
    else:
        print("prediction already on disk")
    return filename


proteinMPNN = gr.Blocks()

with proteinMPNN:
    gr.Markdown("# ProteinMPNN + ESMFold")
    gr.Markdown(
        """This model takes as input a protein structure and based on its backbone predicts new sequences that will fold into that backbone. 
        It will then run [ESMFold](https://esmatlas.com/about) by MetaAI on the predicted structures and align the predicted structure for the designed sequence with the original backbone. 

        **Note, there is a 400 residue limit in this version and multimeric structures can only be predicted locally. Follow, [README](https://huggingface.co/spaces/simonduerr/ProteinMPNNESM/blob/main/README.md) for instructions on how to run locally.** 
        """
    )

    with gr.Tabs():
        with gr.TabItem("Input"):
            inp = gr.Textbox(
                placeholder="PDB Code or upload file below", label="Input structure"
            )
            file = gr.File(file_count="single")

        with gr.TabItem("Settings"):
            with gr.Row():
                designed_chain = gr.Textbox(value="A", label="Designed chain")
                fixed_chain = gr.Textbox(
                    placeholder="Use commas to fix multiple chains", label="Fixed chain"
                )
            with gr.Row():
                num_seqs = gr.Slider(
                    minimum=1, maximum=15, value=1, step=1, label="Number of sequences" 
                )
                sampling_temp = gr.Radio(
                    choices=[0.1, 0.15, 0.2, 0.25, 0.3],
                    value=0.1,
                    label="Sampling temperature",
                    
                )
            gr.Markdown(
                """ Sampling temperature for amino acids, `T=0.0` means taking argmax, `T>>1.0` means sample randomly. Suggested values `0.1, 0.15, 0.2, 0.25, 0.3`. Higher values will lead to more diversity.
            """
            )
            with gr.Row():
                model_name = gr.Dropdown(
                    choices=[
                        "v_48_002",
                        "v_48_010",
                        "v_48_020",
                        "v_48_030",
                    ],
                    label="Model",
                    value="v_48_020",
                    
                )
                backbone_noise = gr.Dropdown(
                    choices=[0, 0.02, 0.10, 0.20, 0.30], label="Backbone noise", value=0, 
                    
                )
            with gr.Row():
                homomer = gr.Checkbox(value=False, label="Homomer?")
                gr.Markdown(
                    "for correct symmetric tying lenghts of homomer chains should be the same"
                )
            gr.Markdown("## Fixed positions")
            gr.Markdown(
                """You can fix important positions in the protein. Resid should be specified with the same numbering as in the input pdb file. The fixed residues will be highlighted in the output. 
                The [VMD selection](http://www.ks.uiuc.edu/Research/vmd/vmd-1.9.2/ug/node89.html) synthax is used. You can also select based on ligands or chains in the input structure to specify interfaces to be fixed.

                 - <code>within 5 of resid 94</code> All residues that have >1 atom closer than 5 Å to any atom of residue 94
                 - <code>name CA and within 5 of resid 94</code> All residues that have CA atom closer than 5 Å to any atom of residue 94
                 - <code>resid 94 96 119</code> Residues 94, 94 and 119
                 - <code>within 5 of resname ZN</code> All residues with any atom <5 Å of zinc ion
                 - <code>chain A and within 5 of chain B </code> All residues of chain A that are part of the interface with chain B
                 - <code>protein and within 5 of nucleic </code> All residues that bind to DNA (if present in structure)
                 - <code>not (chain A and within 5 of chain B) </code>  only modify residues that are in the interface with the fixed chain, not further away
                 - <code>chain A or (chain B and sasa < 20) </code> Keep chain A and all core residues fixeds
                 - <code>pLDDT >70 </code> Redesign all residues with low pLDDT
                 
                 Note that <code>sasa</code> and <code>pLDDT</code> selectors modify default VMD behavior. SASA is calculated using moleculekit and written to the mass attribute. Selections based on mass do not work. 
                 pLDDT is an alias for beta, it only works correctly with structures that contain the appropriate values in the beta column of the PDB file. """
            )
            atomsel = gr.Textbox(
                placeholder="Specify atom selection ", label="Fixed positions", 
                api_name= "fixed_positions"
            )

        btn = gr.Button("Run")
    label = gr.Textbox(label="Label", visible=False)

    samples = [["Monomer design", "6MRR", "A", "", False, 2, 0.1, ""]]

    if is_local:
        samples.extend(
            [
                ["Homomer design", "1O91", "A,B,C", "", True, 2, 0.1, ""],
                [
                    "Redesign of Homomer to Heteromer",
                    "3HTN",
                    "A,B",
                    "C",
                    False,
                    2,
                    0.1,
                    "",
                ],
                [
                    "Redesign of MID1 scaffold keeping binding site fixed",
                    "3V1C",
                    "A,B",
                    "",
                    False,
                    2,
                    0.1,
                    "within 5 of resname ZN",
                ],
                [
                    "Redesign of DNA binding protein",
                    "3JRD",
                    "A,B",
                    "",
                    False,
                    2,
                    0.1,
                    "within 8 of nucleic",
                ],
                [
                    "Surface Redesign of miniprotein",
                    "7JZM",
                    "A,B",
                    "",
                    False,
                    2,
                    0.1,
                    "chain B or (chain A and sasa < 20)",
                ],
            ]
        )
    examples = gr.Dataset(
        components=[
            label,
            inp,
            designed_chain,
            fixed_chain,
            homomer,
            num_seqs,
            sampling_temp,
            atomsel,
        ],
        samples=samples,
    )

    gr.Markdown("# Output")

    with gr.Tabs():
        with gr.TabItem("Designed sequences"):
            chosen_seq = gr.Dropdown(
                choices=[],
                label="Select a sequence for validation",
            )
            mol = gr.HTML()
            out = gr.Textbox(label="Fasta Output")

        with gr.TabItem("Amino acid probabilities"):
            plot = gr.Plot()
            all_log_probs = gr.File(visible=False)
        with gr.TabItem("T adjusted probabilities"):
            gr.Markdown("Sampling temperature adjusted amino acid probabilties")
            plot_tadjusted = gr.Plot()
            all_probs = gr.File(visible=False)

    tempFile = gr.Variable()
    selectedResidues = gr.Variable()
    seq_dict = gr.Variable()
    btn.click(
        fn=update,
        inputs=[
            inp,
            file,
            designed_chain,
            fixed_chain,
            homomer,
            num_seqs,
            sampling_temp,
            model_name,
            backbone_noise,
            atomsel,
        ],
        outputs=[
            out,
            plot,
            plot_tadjusted,
            all_log_probs,
            all_probs,
            tempFile,
            chosen_seq,
            selectedResidues,
            seq_dict,
            mol,
        ],
        api_name = "proteinmpnn"
    )
    chosen_seq.change(
        updateseq,
        inputs=[chosen_seq, seq_dict, tempFile, selectedResidues],
        outputs=mol,
    )
    examples.click(fn=set_examples, inputs=examples, outputs=examples.components)
    gr.Markdown(
        """Citation: **Robust deep learning based protein sequence design using ProteinMPNN** <br>
Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Alexis Courbet, Robbert J. de Haas, Neville Bethel, Philip J. Y. Leung, Timothy F. Huddy, Sam Pellock, Doug Tischer, Frederick Chan, Brian Koepnick, Hannah Nguyen, Alex Kang, Banumathi Sankaran, Asim Bera, Neil P. King, David Baker <br>
Science Vol 378, Issue 6615, pp. 49 -56; doi: [10.1126/science.add2187](https://doi.org/10.1126/science.add2187 <br><br> Server built by [@simonduerr](https://twitter.com/simonduerr) and hosted by Huggingface"""
    )


proteinMPNN.launch()