File size: 17,376 Bytes
227b78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "quickdemo.ipynb",
      "provenance": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/dauparas/ProteinMPNN/blob/main/colab_notebooks/quickdemo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "#ProteinMPNN\n",
        "This notebook is intended as a quick demo, more features to come!"
      ],
      "metadata": {
        "id": "AYZebfKn8gef"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "#@title Setup Model\n",
        "import json, time, os, sys, glob\n",
        "\n",
        "if not os.path.isdir(\"ProteinMPNN\"):\n",
        "  os.system(\"git clone -q https://github.com/dauparas/ProteinMPNN.git\")\n",
        "sys.path.append('/content/ProteinMPNN/vanilla_proteinmpnn')\n",
        "\n",
        "import matplotlib.pyplot as plt\n",
        "import shutil\n",
        "import warnings\n",
        "import numpy as np\n",
        "import torch\n",
        "from torch import optim\n",
        "from torch.utils.data import DataLoader\n",
        "from torch.utils.data.dataset import random_split, Subset\n",
        "import copy\n",
        "import torch.nn as nn\n",
        "import torch.nn.functional as F\n",
        "import random\n",
        "import os.path\n",
        "from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB\n",
        "from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN\n",
        "\n",
        "device = torch.device(\"cuda:0\" if (torch.cuda.is_available()) else \"cpu\")\n",
        "model_name=\"v_48_020\"             # ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030, v_32_002, v_32_010; v_32_020, v_32_030; v_48_010=version with 48 edges 0.10A noise\n",
        "backbone_noise=0.00               # Standard deviation of Gaussian noise to add to backbone atoms\n",
        "\n",
        "path_to_model_weights='/content/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights'          \n",
        "hidden_dim = 128\n",
        "num_layers = 3 \n",
        "model_folder_path = path_to_model_weights\n",
        "if model_folder_path[-1] != '/':\n",
        "    model_folder_path = model_folder_path + '/'\n",
        "checkpoint_path = model_folder_path + f'{model_name}.pt'\n",
        "\n",
        "checkpoint = torch.load(checkpoint_path, map_location=device) \n",
        "print('Number of edges:', checkpoint['num_edges'])\n",
        "noise_level_print = checkpoint['noise_level']\n",
        "print(f'Training noise level: {noise_level_print}A')\n",
        "model = ProteinMPNN(num_letters=21, node_features=hidden_dim, edge_features=hidden_dim, hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers, augment_eps=backbone_noise, k_neighbors=checkpoint['num_edges'])\n",
        "model.to(device)\n",
        "model.load_state_dict(checkpoint['model_state_dict'])\n",
        "model.eval()\n",
        "print(\"Model loaded\")"
      ],
      "metadata": {
        "id": "iYDU3ftml2k5",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import re\n",
        "from google.colab import files\n",
        "import numpy as np\n",
        "\n",
        "#########################\n",
        "def get_pdb(pdb_code=\"\"):\n",
        "  if pdb_code is None or pdb_code == \"\":\n",
        "    upload_dict = files.upload()\n",
        "    pdb_string = upload_dict[list(upload_dict.keys())[0]]\n",
        "    with open(\"tmp.pdb\",\"wb\") as out: out.write(pdb_string)\n",
        "    return \"tmp.pdb\"\n",
        "  else:\n",
        "    os.system(f\"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb\")\n",
        "    return f\"{pdb_code}.pdb\"\n",
        "\n",
        "#@markdown ### Input Options\n",
        "pdb='6MRR' #@param {type:\"string\"}\n",
        "pdb_path = get_pdb(pdb)\n",
        "#@markdown - pdb code (leave blank to get an upload prompt)\n",
        "\n",
        "designed_chain = \"A\" #@param {type:\"string\"}\n",
        "fixed_chain = \"\" #@param {type:\"string\"}\n",
        "\n",
        "if designed_chain == \"\":\n",
        "  designed_chain_list = []\n",
        "else:\n",
        "  designed_chain_list = re.sub(\"[^A-Za-z]+\",\",\", designed_chain).split(\",\")\n",
        "\n",
        "if fixed_chain == \"\":\n",
        "  fixed_chain_list = []\n",
        "else:\n",
        "  fixed_chain_list = re.sub(\"[^A-Za-z]+\",\",\", fixed_chain).split(\",\")\n",
        "\n",
        "chain_list = list(set(designed_chain_list + fixed_chain_list))\n",
        "\n",
        "#@markdown - specified which chain(s) to design and which chain(s) to keep fixed. \n",
        "#@markdown   Use comma:`A,B` to specifiy more than one chain\n",
        "\n",
        "#chain = \"A\" #@param {type:\"string\"}\n",
        "#pdb_path_chains = chain\n",
        "##@markdown - Define which chain to redesign\n",
        "\n",
        "#@markdown ### Design Options\n",
        "num_seqs = 1 #@param [\"1\", \"2\", \"4\", \"8\", \"16\", \"32\", \"64\"] {type:\"raw\"}\n",
        "num_seq_per_target = num_seqs\n",
        "sampling_temp = \"0.1\" #@param [\"0.1\", \"0.15\", \"0.2\", \"0.25\", \"0.3\"]\n",
        "#@markdown - Sampling temperature for amino acids, T=0.0 means taking \n",
        "#@markdown   argmax, T>>1.0 means sample randomly. Suggested values \n",
        "#@markdown   0.1, 0.15, 0.2, 0.25, 0.3. Higher values will lead to more diversity.\n",
        "\n",
        "\n",
        "save_score=0                      # 0 for False, 1 for True; save score=-log_prob to npy files\n",
        "save_probs=0                      # 0 for False, 1 for True; save MPNN predicted probabilites per position\n",
        "score_only=0                      # 0 for False, 1 for True; score input backbone-sequence pairs\n",
        "conditional_probs_only=0          # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)\n",
        "conditional_probs_only_backbone=0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)\n",
        "    \n",
        "batch_size=1                      # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory\n",
        "max_length=20000                  # Max sequence length\n",
        "    \n",
        "out_folder='.'                    # Path to a folder to output sequences, e.g. /home/out/\n",
        "jsonl_path=''                     # Path to a folder with parsed pdb into jsonl\n",
        "omit_AAs='X'                      # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.\n",
        "   \n",
        "pssm_multi=0.0                    # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions\n",
        "pssm_threshold=0.0                # A value between -inf + inf to restric per position AAs\n",
        "pssm_log_odds_flag=0               # 0 for False, 1 for True\n",
        "pssm_bias_flag=0                   # 0 for False, 1 for True\n",
        "\n",
        "\n",
        "##############################################################\n",
        "\n",
        "folder_for_outputs = out_folder\n",
        "\n",
        "NUM_BATCHES = num_seq_per_target//batch_size\n",
        "BATCH_COPIES = batch_size\n",
        "temperatures = [float(item) for item in sampling_temp.split()]\n",
        "omit_AAs_list = omit_AAs\n",
        "alphabet = 'ACDEFGHIKLMNPQRSTVWYX'\n",
        "\n",
        "omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)\n",
        "\n",
        "chain_id_dict = None\n",
        "fixed_positions_dict = None\n",
        "pssm_dict = None\n",
        "omit_AA_dict = None\n",
        "bias_AA_dict = None\n",
        "tied_positions_dict = None\n",
        "bias_by_res_dict = None\n",
        "bias_AAs_np = np.zeros(len(alphabet))\n",
        "\n",
        "\n",
        "###############################################################\n",
        "pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list)\n",
        "dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=max_length)\n",
        "\n",
        "chain_id_dict = {}\n",
        "chain_id_dict[pdb_dict_list[0]['name']]= (designed_chain_list, fixed_chain_list)\n",
        "\n",
        "print(chain_id_dict)"
      ],
      "metadata": {
        "cellView": "form",
        "id": "k4o6w2Y23wxO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "#@title RUN\n",
        "with torch.no_grad():\n",
        "  print('Generating sequences...')\n",
        "  for ix, protein in enumerate(dataset_valid):\n",
        "    score_list = []\n",
        "    all_probs_list = []\n",
        "    all_log_probs_list = []\n",
        "    S_sample_list = []\n",
        "    batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)]\n",
        "    X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict, bias_by_res_dict)\n",
        "    pssm_log_odds_mask = (pssm_log_odds_all > pssm_threshold).float() #1.0 for true, 0.0 for false\n",
        "    name_ = batch_clones[0]['name']\n",
        "\n",
        "    randn_1 = torch.randn(chain_M.shape, device=X.device)\n",
        "    log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1)\n",
        "    mask_for_loss = mask*chain_M*chain_M_pos\n",
        "    scores = _scores(S, log_probs, mask_for_loss)\n",
        "    native_score = scores.cpu().data.numpy()\n",
        "\n",
        "    for temp in temperatures:\n",
        "        for j in range(NUM_BATCHES):\n",
        "            randn_2 = torch.randn(chain_M.shape, device=X.device)\n",
        "            if tied_positions_dict == None:\n",
        "                sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), bias_by_res=bias_by_res_all)\n",
        "                S_sample = sample_dict[\"S\"] \n",
        "            else:\n",
        "                sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all)\n",
        "            # Compute scores\n",
        "                S_sample = sample_dict[\"S\"]\n",
        "            log_probs = model(X, S_sample, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_2, use_input_decoding_order=True, decoding_order=sample_dict[\"decoding_order\"])\n",
        "            mask_for_loss = mask*chain_M*chain_M_pos\n",
        "            scores = _scores(S_sample, log_probs, mask_for_loss)\n",
        "            scores = scores.cpu().data.numpy()\n",
        "            all_probs_list.append(sample_dict[\"probs\"].cpu().data.numpy())\n",
        "            all_log_probs_list.append(log_probs.cpu().data.numpy())\n",
        "            S_sample_list.append(S_sample.cpu().data.numpy())\n",
        "            for b_ix in range(BATCH_COPIES):\n",
        "                masked_chain_length_list = masked_chain_length_list_list[b_ix]\n",
        "                masked_list = masked_list_list[b_ix]\n",
        "                seq_recovery_rate = torch.sum(torch.sum(torch.nn.functional.one_hot(S[b_ix], 21)*torch.nn.functional.one_hot(S_sample[b_ix], 21),axis=-1)*mask_for_loss[b_ix])/torch.sum(mask_for_loss[b_ix])\n",
        "                seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])\n",
        "                score = scores[b_ix]\n",
        "                score_list.append(score)\n",
        "                native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])\n",
        "                if b_ix == 0 and j==0 and temp==temperatures[0]:\n",
        "                    start = 0\n",
        "                    end = 0\n",
        "                    list_of_AAs = []\n",
        "                    for mask_l in masked_chain_length_list:\n",
        "                        end += mask_l\n",
        "                        list_of_AAs.append(native_seq[start:end])\n",
        "                        start = end\n",
        "                    native_seq = \"\".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))\n",
        "                    l0 = 0\n",
        "                    for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:\n",
        "                        l0 += mc_length\n",
        "                        native_seq = native_seq[:l0] + '/' + native_seq[l0:]\n",
        "                        l0 += 1\n",
        "                    sorted_masked_chain_letters = np.argsort(masked_list_list[0])\n",
        "                    print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters]\n",
        "                    sorted_visible_chain_letters = np.argsort(visible_list_list[0])\n",
        "                    print_visible_chains = [visible_list_list[0][i] for i in sorted_visible_chain_letters]\n",
        "                    native_score_print = np.format_float_positional(np.float32(native_score.mean()), unique=False, precision=4)\n",
        "                    line = '>{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\\n{}\\n'.format(name_, native_score_print, print_visible_chains, print_masked_chains, model_name, native_seq)\n",
        "                    print(line.rstrip())\n",
        "                start = 0\n",
        "                end = 0\n",
        "                list_of_AAs = []\n",
        "                for mask_l in masked_chain_length_list:\n",
        "                    end += mask_l\n",
        "                    list_of_AAs.append(seq[start:end])\n",
        "                    start = end\n",
        "\n",
        "                seq = \"\".join(list(np.array(list_of_AAs)[np.argsort(masked_list)]))\n",
        "                l0 = 0\n",
        "                for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]:\n",
        "                    l0 += mc_length\n",
        "                    seq = seq[:l0] + '/' + seq[l0:]\n",
        "                    l0 += 1\n",
        "                score_print = np.format_float_positional(np.float32(score), unique=False, precision=4)\n",
        "                seq_rec_print = np.format_float_positional(np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4)\n",
        "                line = '>T={}, sample={}, score={}, seq_recovery={}\\n{}\\n'.format(temp,b_ix,score_print,seq_rec_print,seq)\n",
        "                print(line.rstrip())\n",
        "\n",
        "\n",
        "all_probs_concat = np.concatenate(all_probs_list)\n",
        "all_log_probs_concat = np.concatenate(all_log_probs_list)\n",
        "S_sample_concat = np.concatenate(S_sample_list)"
      ],
      "metadata": {
        "id": "xMVlYh8Fv2of",
        "cellView": "form"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# experimental output\n",
        "plt.figure(figsize=(20,5), dpi=100)\n",
        "plt.imshow(all_probs_concat.mean(0).T,vmin=0,vmax=1)\n",
        "plt.xlabel(\"positions\")\n",
        "plt.ylabel(\"amino acids\")\n",
        "plt.yticks(range(21),list(alphabet))\n",
        "plt.show()"
      ],
      "metadata": {
        "id": "4jSKLU3L17Sf"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}