Spaces:
Running
Running
File size: 1,432 Bytes
227b78b fc5272c 227b78b fc5272c 227b78b fc5272c 227b78b fc5272c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
title: ProteinMPNN + ESM
emoji: ⚡
colorFrom: red
colorTo: pink
sdk: gradio
sdk_version: 3.1.7
app_file: app.py
pinned: false
license: mit
---
# ProteinMPNN + ESM
You can run this repo locally with the following easy steps.
In a new python environment, do:
```
pip install -r requirements.txt
pip install --upgrade transformers accelerate
python app.py
```
This will launch a local webserver and a share URL (`xxx.gradio.app`, helpful if running this on a cluster), open the url in your webbrowser and start designing proteins.
**Robust deep learning based protein sequence design using ProteinMPNN**
Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Alexis Courbet, Robbert J. de Haas, Neville Bethel, Philip J. Y. Leung, Timothy F. Huddy, Sam Pellock, Doug Tischer, Frederick Chan, Brian Koepnick, Hannah Nguyen, Alex Kang, Banumathi Sankaran, Asim Bera, Neil P. King, David Baker
bioRxiv 2022.06.03.494563; doi: https://doi.org/10.1101/2022.06.03.494563
**Evolutionary-scale prediction of atomic level protein structure with a language model**
Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore Candido, Alexander Rives
bioRxiv 2022.07.20.500902; doi: https://doi.org/10.1101/2022.07.20.500902 |