File size: 4,525 Bytes
1825dee
 
 
60fae37
85ad568
 
60fae37
375ee1a
93c23b2
573f2cc
ea823ae
573f2cc
93c23b2
 
573f2cc
 
 
5ff04d4
bff3320
 
 
8704b30
76c9d92
f07faaf
573f2cc
 
8704b30
573f2cc
 
8704b30
76c9d92
f07faaf
8704b30
573f2cc
8704b30
573f2cc
 
375ee1a
42f5e17
7d63449
93c23b2
 
 
 
 
 
 
 
 
 
 
 
 
9358437
 
 
93c23b2
 
 
 
 
 
 
 
 
 
 
 
 
f5e0235
93c23b2
f5e0235
 
 
 
93c23b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60fae37
 
 
93c23b2
 
 
 
 
 
 
 
 
 
7d63449
 
 
 
 
1f2402d
 
 
7d63449
8198e38
 
7d63449
60fae37
6bb464c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import spaces


import gradio as gr
from gradio_molecule3d import Molecule3D
from gradio_cofoldinginput import CofoldingInput

import os
import re
import urllib.request
import yaml 

from msa import run_mmseqs2

CCD_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/ccd.pkl"
MODEL_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/boltz1.ckpt"

cache = "/home/user/.boltz"

os.makedirs(cache)

ccd = f"{cache}/ccd.pkl"
if not os.path.exists(ccd):
    print(
        f"Downloading the CCD dictionary to {ccd}. You may "
    )
    urllib.request.urlretrieve(CCD_URL, str(ccd))

# Download model
model =f"{cache}/boltz1.ckpt"
if not os.path.exists(model):
    print(
        f"Downloading the model weights to {model}"
    )
    urllib.request.urlretrieve(MODEL_URL, str(model))



@spaces.GPU(duration=120)
def predict(jobname, inputs, recycling_steps, sampling_steps, diffusion_samples):
    jobname = re.sub(r'[<>:"/\\|?*]', '_', jobname)
    os.makedirs(jobname)
    """format Gradio Component:
    # {"chains": [
    #     {
    #         "class": "DNA",
    #         "sequence": "ATGCGT",
    #         "chain": "A"
    #     }
    # ], "covMods":[]
    # }
    """
    sequences_for_msa = []
    output = {
    "sequences": []
    }
    for chain in inputs["chains"]:
        entity_type = chain["class"].lower()
        sequence_data = {
            entity_type: {
                "id": chain["chain"],
            }
        }
        if entity_type in ["protein", "dna", "rna"]:
            sequence_data[entity_type]["sequence"] = chain["sequence"]
            if entity_type == "protein":
                sequences_for_msa.append(chain["sequence"])
                sequence_data[entity_type]["msa"] = f"{jobname}/msa.a3m"
        if entity_type == "ligand":
            if "sdf" in chain.keys():
                raise gr.Error("Sorry no SDF support yet")
            if "name" in chain.keys():
                 sequence_data[entity_type]["ccd"] = chain["name"]
            if "smiles" in chain.keys():
                 sequence_data[entity_type]["smiles"] = chain["smiles"]

        if len(inputs["covMods"])>0:
            raise gr.Error("Sorry, covMods not supported yet. Coming soon. ")
        output["sequences"].append(sequence_data)

    # Convert the output to YAML
    yaml_file_path = f"{jobname}/{jobname}.yaml"

    # Write the YAML output to the file
    with open(yaml_file_path, "w") as file:
        yaml.dump(output, file, sort_keys=False, default_flow_style=False)

    os.system(f"cat {yaml_file_path}")
    a3m_lines_mmseqs2 = run_mmseqs2(
                    sequences_for_msa,
                    "./",
                    use_templates=False,
                )
    with open(f"{jobname}/msa.a3m", "w+") as fp:
        fp.writelines(a3m_lines_mmseqs2)

    os.system(f"boltz predict {jobname}/{jobname}.yaml --out_dir {jobname} --recycling_steps {recycling_steps} --sampling_steps {sampling_steps} --diffusion_samples {diffusion_samples} --override --output_format pdb")
    print(os.listdir(jobname))
    print(os.listdir(f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/"))
    return f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/{jobname}_model_0.pdb"

with gr.Blocks() as blocks:
    gr.Markdown("# Boltz-1")
    gr.Markdown("""Open GUI for running [Boltz-1 model](https://github.com/jwohlwend/boltz/) <br>
    Key components:
    - MMSeqs2 Webserver Mirdita et al. 
    - Boltz-1 Model Wohlwend et al.
    - Gradio Custom Components Molecule3D/Cofolding Input Dürr S.
    - 3dmol.js Rego & Koes 
    
    Note: This is an alpha: Some things like covalent modifications or using sdf files don't work yet. You can a Docker image of this on your local infrastructure easily using:
    `docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/simonduerr-boltz-1:latest python app.py`
    """)
    with gr.Tab("Main"):
        jobname = gr.Textbox(label="Jobname")
        inp = CofoldingInput(label="Input")
        out = Molecule3D(label="Output")
    with gr.Tab("Settings"):
        recycling_steps =gr.Slider(value=3, minimum=0, label="Recycling steps")
        sampling_steps = gr.Slider(value=200, minimum=0, label="Sampling steps")
        diffusion_samples = gr.Slider(value=1, label="Diffusion samples")

    btn = gr.Button("predict")

    btn.click(fn=predict, inputs=[jobname,inp, recycling_steps, sampling_steps, diffusion_samples], outputs=[out],  api_name="predict")

blocks.launch(ssr_mode=False)