boltz-1 / app.py
simonduerr's picture
Update app.py
4064992 verified
raw
history blame
5.93 kB
import spaces
import gradio as gr
from gradio_molecule3d import Molecule3D
from gradio_cofoldinginput import CofoldingInput
import os
import re
import urllib.request
import yaml
from msa import run_mmseqs2
CCD_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/ccd.pkl"
MODEL_URL = "https://huggingface.co/boltz-community/boltz-1/resolve/main/boltz1.ckpt"
cache = "/home/user/.boltz"
os.makedirs(cache)
ccd = f"{cache}/ccd.pkl"
if not os.path.exists(ccd):
print(
f"Downloading the CCD dictionary to {ccd}. You may "
)
urllib.request.urlretrieve(CCD_URL, str(ccd))
# Download model
model =f"{cache}/boltz1.ckpt"
if not os.path.exists(model):
print(
f"Downloading the model weights to {model}"
)
urllib.request.urlretrieve(MODEL_URL, str(model))
@spaces.GPU(duration=120)
def predict(jobname, inputs, recycling_steps, sampling_steps, diffusion_samples):
jobname = re.sub(r'[<>:"/\\|?*]', '_', jobname)
if jobname == "":
raise gr.Error("Job name empty or only invalid characters. Choose a plaintext name.")
os.makedirs(jobname, exist_ok=True)
"""format Gradio Component:
# {"chains": [
# {
# "class": "DNA",
# "sequence": "ATGCGT",
# "chain": "A"
# }
# ], "covMods":[]
# }
"""
sequences_for_msa = []
output = {
"sequences": []
}
representations = []
for chain in inputs["chains"]:
entity_type = chain["class"].lower()
sequence_data = {
entity_type: {
"id": chain["chain"],
}
}
if entity_type in ["protein", "dna", "rna"]:
sequence_data[entity_type]["sequence"] = chain["sequence"]
if entity_type == "protein":
sequences_for_msa.append(chain["sequence"])
sequence_data[entity_type]["msa"] = f"{jobname}/msa.a3m"
representations.append({"model":0, "chain":chain["chain"], "style":"cartoon"})
if entity_type == "ligand":
if "sdf" in chain.keys():
if chain["sdf"]!="":
raise gr.Error("Sorry no SDF support yet")
if "name" in chain.keys():
sequence_data[entity_type]["ccd"] = chain["name"]
if "smiles" in chain.keys():
sequence_data[entity_type]["smiles"] = chain["smiles"]
representations.append({"model":0, "chain":chain["chain"], "style":"stick", "color":"greenCarbon"})
if len(inputs["covMods"])>0:
raise gr.Error("Sorry, covMods not supported yet. Coming soon. ")
output["sequences"].append(sequence_data)
# Convert the output to YAML
yaml_file_path = f"{jobname}/{jobname}.yaml"
# Write the YAML output to the file
with open(yaml_file_path, "w") as file:
yaml.dump(output, file, sort_keys=False, default_flow_style=False)
os.system(f"cat {yaml_file_path}")
a3m_lines_mmseqs2 = run_mmseqs2(
sequences_for_msa,
f"./{jobname}",
use_templates=False,
)
with open(f"{jobname}/msa.a3m", "w+") as fp:
fp.writelines(a3m_lines_mmseqs2)
os.system(f"boltz predict {jobname}/{jobname}.yaml --out_dir {jobname} --recycling_steps {recycling_steps} --sampling_steps {sampling_steps} --diffusion_samples {diffusion_samples} --override --output_format pdb")
print(os.listdir(jobname))
print(os.listdir(f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/"))
return Molecule3D(f"{jobname}/boltz_results_{jobname}/predictions/{jobname}/{jobname}_model_0.pdb", label="Output", reps=representations)
with gr.Blocks() as blocks:
gr.Markdown("# Boltz-1")
gr.Markdown("""Open GUI for running [Boltz-1 model](https://github.com/jwohlwend/boltz/) <br>
Key components:
- MMSeqs2 Webserver [Mirdita et al.](https://www.nature.com/articles/s41592-022-01488-1)
- Boltz-1 Model [Wohlwend et al.](https://github.com/jwohlwend/boltz/)
- Gradio Custom Components [Molecule3D](https://huggingface.co/spaces/simonduerr/gradio_molecule3d)/[Cofolding Input](https://huggingface.co/spaces/simonduerr/gradio_cofoldinginput) by myself
- [3dmol.js Rego & Koes](https://academic.oup.com/bioinformatics/article/31/8/1322/213186)
Note: This is an alpha: Some things like covalent modifications or using sdf files don't work yet. You can a Docker image of this on your local infrastructure easily using:
`docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/simonduerr-boltz-1:latest python app.py`
""")
with gr.Tab("Main"):
jobname = gr.Textbox(label="Jobname")
inp = CofoldingInput(label="Input")
out = Molecule3D(label="Output")
with gr.Tab("Settings"):
recycling_steps =gr.Slider(value=3, minimum=0, label="Recycling steps")
sampling_steps = gr.Slider(value=200, minimum=0, label="Sampling steps")
diffusion_samples = gr.Slider(value=1, label="Diffusion samples")
gr.Examples([
["TOP7",{"chains": [{"class": "protein","sequence": "MGDIQVQVNIDDNGKNFDYTYTVTTESELQKVLNELMDYIKKQGAKRVRISITARTKKEAEKFAAILIKVFAELGYNDINVTFDGDTVTVEGQLEGGSLEHHHHHH","chain": "A"}], "covMods":[]}],
["ApixacabanBinder", {"chains": [{"class": "protein","sequence": "SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL","chain": "A"}, {"class":"ligand", "smiles":"COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O", "sdf":"","name":"","chain": "B"}], "covMods":[]}]
],
inputs = [jobname, inp]
)
btn = gr.Button("predict")
btn.click(fn=predict, inputs=[jobname,inp, recycling_steps, sampling_steps, diffusion_samples], outputs=[out], api_name="predict")
blocks.launch(ssr_mode=False)