Call2Vec / app.py
simonschoe's picture
resolve merge conflict
5b1ac66
import os
import re
from datetime import datetime
import gradio as gr
import numpy as np
import pandas as pd
from gensim.models.fasttext import load_facebook_model
from huggingface_hub import hf_hub_download
ACCESS_KEY = os.environ.get('ACCESS_KEY')
url = hf_hub_download(repo_id="simonschoe/call2vec", filename="model.bin") #hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
model = load_facebook_model(url)
def semantic_search(_input, neighbours):
""" Perform semantic search """
_input = re.split('[,;\n]', _input)
_input = [s.strip().lower().replace(' ', '_') for s in _input if s]
if _input[0] != ACCESS_KEY:
with open('log.txt', 'a', encoding='utf-8') as f:
f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')
if len(_input) > 1:
avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
nearest_neighbours = model.wv.most_similar(positive=avg_input, topn=neighbours)
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
else:
nearest_neighbours = model.wv.most_similar(positive=_input[0], topn=neighbours)
frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbours]
if _input[0] == ACCESS_KEY:
with open('log.txt', 'r', encoding='utf-8') as f:
prompts = f.readlines()
prompts = [p.strip().split('+++') for p in prompts]
result = pd.DataFrame(prompts,
columns=['Time', 'Prompt'])
else:
result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbours, frequencies)],
columns=['Token', 'Cosine Similarity', 'Corpus Frequency'])
result.to_csv('result.csv')
return result, 'result.csv', '\n'.join(_input)
app = gr.Blocks(theme=gr.themes.Default(), css='#component-0 {max-width: 730px; margin: auto; padding-top: 1.5rem}')
with app:
gr.Markdown(
"""
# Call2Vec
## Semantic Search in Quarterly Earnings Conference Calls
"""
)
with gr.Tabs() as tabs:
with gr.TabItem("πŸ” Model", id=0):
text_in = gr.Textbox(lines=1, placeholder="Insert text", label="Search Query")
with gr.Row():
n = gr.Slider(value=50, minimum=5, maximum=500, step=5, label="Number of Neighbours")
btn = gr.Button("Search")
df_out = gr.Dataframe(interactive=False)
f_out = gr.File(interactive=False, label="Download")
gr.Examples(
examples = [
["transformation", 20],
["climate_change", 50],
["risk, political_risk, uncertainty", 250],
],
inputs = [text_in, n],
outputs = [df_out, f_out, text_in],
fn = semantic_search,
cache_examples=True
)
with gr.TabItem("πŸ“ Usage", id=1):
gr.Markdown(
"""
#### App usage
The model is intended to be used for **semantic search**: It encodes the search query (entered in the textbox on the right) in a dense vector space and finds semantic neighbours, i.e., token which frequently occur within similar contexts in the underlying training data.
The model allows for two use cases:
1. *Single Search:* The input query consists of a single word. When provided a bi-, tri-, or even fourgram, the quality of the model output depends on the presence of the query token in the model's vocabulary. N-grams should be concated by an underscore (e.g., "machine_learning" or "artifical_intelligence").
2. *Multi Search:* The input query may consist of several words or n-grams, seperated by comma, semi-colon or newline. It then computes the average vector over all inputs and performs semantic search based on the average input token.
"""
)
with gr.TabItem("πŸ“– About", id=2):
gr.Markdown(
"""
#### Project Description
Call2Vec is a [fastText](https://fasttext.cc/) word embedding model trained via [Gensim](https://radimrehurek.com/gensim/). It maps each token in the vocabulary into a dense, 300-dimensional vector space, designed for performing semantic search.
The model is trained on a large sample of quarterly earnings conference calls, held by U.S. firms during the 2006-2022 period. In particular, the training data is restriced to the (rather sponentous) executives' remarks of the Q&A section of the call. The data has been preprocessed prior to model training via stop word removal, lemmatization, named entity masking, and coocurrence modeling.
"""
)
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value='Placeholder',
label='Copy to cite these results.',
show_copy_button=True
)
btn.click(semantic_search, inputs=[text_in, n], outputs=[df_out, f_out, text_in])
app.launch()