Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def plot_penalties(): | |
# Plot the results | |
plt.clf() | |
l1_color = 'r' # hard coded as color picker not working | |
l2_color = 'g' # hard coded as color picker not working | |
elastic_net_color = 'b' # hard coded as color picker not working | |
line = np.linspace(-1.5, 1.5, 1001) | |
xx, yy = np.meshgrid(line, line) | |
l2 = xx**2 + yy**2 | |
l1 = np.abs(xx) + np.abs(yy) | |
rho = 0.5 | |
elastic_net = rho * l1 + (1 - rho) * l2 | |
fig = plt.figure(figsize=(10, 10), dpi=100) | |
ax = plt.gca() | |
elastic_net_contour = plt.contour( | |
xx, yy, elastic_net, levels=[1], colors=elastic_net_color | |
) | |
l2_contour = plt.contour(xx, yy, l2, levels=[1], colors=l2_color) | |
l1_contour = plt.contour(xx, yy, l1, levels=[1], colors=l1_color) | |
ax.set_aspect("equal") | |
ax.spines["left"].set_position("center") | |
ax.spines["right"].set_color("none") | |
ax.spines["bottom"].set_position("center") | |
ax.spines["top"].set_color("none") | |
plt.clabel( | |
elastic_net_contour, | |
inline=1, | |
fontsize=18, | |
fmt={1.0: "elastic-net"}, | |
manual=[(-1, -1)],) | |
plt.clabel(l2_contour, inline=1, fontsize=18, fmt={1.0: "L2"}, manual=[(-1, -1)]) | |
plt.clabel(l1_contour, inline=1, fontsize=18, fmt={1.0: "L1"}, manual=[(-1, -1)]) | |
plt.tight_layout() | |
# plt.show() | |
return fig | |
title = "SGD Penalties" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown( | |
""" | |
### The plot shows the contours of L1, L2 and Elastic Net regularizers. | |
### The value of penalties is equal to 1 in all of them. | |
### L2 regularizer is used for linear SVM models, L1 and elastic net brings sparsity in the models | |
### SGDClassifier and SGDRegressor support all of the above. | |
""") | |
gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_penalties.html#sphx-glr-auto-examples-linear-model-plot-sgd-penalties-py)**") | |
btn = gr.Button(value="Visualize SGD penalties") | |
btn.click(plot_penalties, outputs= gr.Plot() ) # | |
demo.launch() |