Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,952 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
Attention,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
from .modeling_enc_dec import (
DecoderOutput, DiagonalGaussianDistribution,
CausalVaeDecoder, CausalVaeEncoder,
)
from .modeling_causal_conv import CausalConv3d
from IPython import embed
from utils import (
is_context_parallel_initialized,
get_context_parallel_group,
get_context_parallel_world_size,
get_context_parallel_rank,
get_context_parallel_group_rank,
)
from .context_parallel_ops import (
conv_scatter_to_context_parallel_region,
conv_gather_from_context_parallel_region,
)
class CausalVideoVAE(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
# encoder related parameters
encoder_in_channels: int = 3,
encoder_out_channels: int = 4,
encoder_layers_per_block: Tuple[int, ...] = (2, 2, 2, 2),
encoder_down_block_types: Tuple[str, ...] = (
"DownEncoderBlockCausal3D",
"DownEncoderBlockCausal3D",
"DownEncoderBlockCausal3D",
"DownEncoderBlockCausal3D",
),
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
encoder_spatial_down_sample: Tuple[bool, ...] = (True, True, True, False),
encoder_temporal_down_sample: Tuple[bool, ...] = (True, True, True, False),
encoder_block_dropout: Tuple[int, ...] = (0.0, 0.0, 0.0, 0.0),
encoder_act_fn: str = "silu",
encoder_norm_num_groups: int = 32,
encoder_double_z: bool = True,
encoder_type: str = 'causal_vae_conv',
# decoder related
decoder_in_channels: int = 4,
decoder_out_channels: int = 3,
decoder_layers_per_block: Tuple[int, ...] = (3, 3, 3, 3),
decoder_up_block_types: Tuple[str, ...] = (
"UpDecoderBlockCausal3D",
"UpDecoderBlockCausal3D",
"UpDecoderBlockCausal3D",
"UpDecoderBlockCausal3D",
),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
decoder_spatial_up_sample: Tuple[bool, ...] = (True, True, True, False),
decoder_temporal_up_sample: Tuple[bool, ...] = (True, True, True, False),
decoder_block_dropout: Tuple[int, ...] = (0.0, 0.0, 0.0, 0.0),
decoder_act_fn: str = "silu",
decoder_norm_num_groups: int = 32,
decoder_type: str = 'causal_vae_conv',
sample_size: int = 256,
scaling_factor: float = 0.18215,
add_post_quant_conv: bool = True,
interpolate: bool = False,
downsample_scale: int = 8,
):
super().__init__()
print(f"The latent dimmension channes is {encoder_out_channels}")
# pass init params to Encoder
self.encoder = CausalVaeEncoder(
in_channels=encoder_in_channels,
out_channels=encoder_out_channels,
down_block_types=encoder_down_block_types,
spatial_down_sample=encoder_spatial_down_sample,
temporal_down_sample=encoder_temporal_down_sample,
block_out_channels=encoder_block_out_channels,
layers_per_block=encoder_layers_per_block,
act_fn=encoder_act_fn,
norm_num_groups=encoder_norm_num_groups,
double_z=True,
block_dropout=encoder_block_dropout,
)
# pass init params to Decoder
self.decoder = CausalVaeDecoder(
in_channels=decoder_in_channels,
out_channels=decoder_out_channels,
up_block_types=decoder_up_block_types,
spatial_up_sample=decoder_spatial_up_sample,
temporal_up_sample=decoder_temporal_up_sample,
block_out_channels=decoder_block_out_channels,
layers_per_block=decoder_layers_per_block,
norm_num_groups=decoder_norm_num_groups,
act_fn=decoder_act_fn,
interpolate=interpolate,
block_dropout=decoder_block_dropout,
)
self.quant_conv = CausalConv3d(2 * encoder_out_channels, 2 * encoder_out_channels, kernel_size=1, stride=1)
self.post_quant_conv = CausalConv3d(encoder_out_channels, encoder_out_channels, kernel_size=1, stride=1)
self.use_tiling = False
# only relevant if vae tiling is enabled
self.tile_sample_min_size = self.config.sample_size
sample_size = (
self.config.sample_size[0]
if isinstance(self.config.sample_size, (list, tuple))
else self.config.sample_size
)
self.tile_latent_min_size = int(sample_size / downsample_scale)
self.encode_tile_overlap_factor = 1 / 8
self.decode_tile_overlap_factor = 1 / 8
self.downsample_scale = downsample_scale
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (Encoder, Decoder)):
module.gradient_checkpointing = value
def enable_tiling(self, use_tiling: bool = True):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.use_tiling = use_tiling
def disable_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.enable_tiling(False)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
def encode(
self, x: torch.FloatTensor, return_dict: bool = True,
is_init_image=True, temporal_chunk=False, window_size=16, tile_sample_min_size=256,
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.FloatTensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
self.tile_sample_min_size = tile_sample_min_size
self.tile_latent_min_size = int(tile_sample_min_size / self.downsample_scale)
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(x, return_dict=return_dict, is_init_image=is_init_image,
temporal_chunk=temporal_chunk, window_size=window_size)
if temporal_chunk:
moments = self.chunk_encode(x, window_size=window_size)
else:
h = self.encoder(x, is_init_image=is_init_image, temporal_chunk=False)
moments = self.quant_conv(h, is_init_image=is_init_image, temporal_chunk=False)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
@torch.no_grad()
def chunk_encode(self, x: torch.FloatTensor, window_size=16):
# Only used during inference
# Encode a long video clips through sliding window
num_frames = x.shape[2]
assert (num_frames - 1) % self.downsample_scale == 0
init_window_size = window_size + 1
frame_list = [x[:,:,:init_window_size]]
# To chunk the long video
full_chunk_size = (num_frames - init_window_size) // window_size
fid = init_window_size
for idx in range(full_chunk_size):
frame_list.append(x[:, :, fid:fid+window_size])
fid += window_size
if fid < num_frames:
frame_list.append(x[:, :, fid:])
latent_list = []
for idx, frames in enumerate(frame_list):
if idx == 0:
h = self.encoder(frames, is_init_image=True, temporal_chunk=True)
moments = self.quant_conv(h, is_init_image=True, temporal_chunk=True)
else:
h = self.encoder(frames, is_init_image=False, temporal_chunk=True)
moments = self.quant_conv(h, is_init_image=False, temporal_chunk=True)
latent_list.append(moments)
latent = torch.cat(latent_list, dim=2)
return latent
def get_last_layer(self):
return self.decoder.conv_out.conv.weight
@torch.no_grad()
def chunk_decode(self, z: torch.FloatTensor, window_size=2):
num_frames = z.shape[2]
init_window_size = window_size + 1
frame_list = [z[:,:,:init_window_size]]
# To chunk the long video
full_chunk_size = (num_frames - init_window_size) // window_size
fid = init_window_size
for idx in range(full_chunk_size):
frame_list.append(z[:, :, fid:fid+window_size])
fid += window_size
if fid < num_frames:
frame_list.append(z[:, :, fid:])
dec_list = []
for idx, frames in enumerate(frame_list):
if idx == 0:
z_h = self.post_quant_conv(frames, is_init_image=True, temporal_chunk=True)
dec = self.decoder(z_h, is_init_image=True, temporal_chunk=True)
else:
z_h = self.post_quant_conv(frames, is_init_image=False, temporal_chunk=True)
dec = self.decoder(z_h, is_init_image=False, temporal_chunk=True)
dec_list.append(dec)
dec = torch.cat(dec_list, dim=2)
return dec
def decode(self, z: torch.FloatTensor, is_init_image=True, temporal_chunk=False,
return_dict: bool = True, window_size: int = 2, tile_sample_min_size: int = 256,) -> Union[DecoderOutput, torch.FloatTensor]:
self.tile_sample_min_size = tile_sample_min_size
self.tile_latent_min_size = int(tile_sample_min_size / self.downsample_scale)
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(z, is_init_image=is_init_image,
temporal_chunk=temporal_chunk, window_size=window_size, return_dict=return_dict)
if temporal_chunk:
dec = self.chunk_decode(z, window_size=window_size)
else:
z = self.post_quant_conv(z, is_init_image=is_init_image, temporal_chunk=False)
dec = self.decoder(z, is_init_image=is_init_image, temporal_chunk=False)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
return b
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True,
is_init_image=True, temporal_chunk=False, window_size=16,) -> AutoencoderKLOutput:
r"""Encode a batch of images using a tiled encoder.
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
output, but they should be much less noticeable.
Args:
x (`torch.FloatTensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
`tuple` is returned.
"""
overlap_size = int(self.tile_sample_min_size * (1 - self.encode_tile_overlap_factor))
blend_extent = int(self.tile_latent_min_size * self.encode_tile_overlap_factor)
row_limit = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
rows = []
for i in range(0, x.shape[3], overlap_size):
row = []
for j in range(0, x.shape[4], overlap_size):
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
if temporal_chunk:
tile = self.chunk_encode(tile, window_size=window_size)
else:
tile = self.encoder(tile, is_init_image=True, temporal_chunk=False)
tile = self.quant_conv(tile, is_init_image=True, temporal_chunk=False)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
moments = torch.cat(result_rows, dim=3)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def tiled_decode(self, z: torch.FloatTensor, is_init_image=True,
temporal_chunk=False, window_size=2, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.FloatTensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
overlap_size = int(self.tile_latent_min_size * (1 - self.decode_tile_overlap_factor))
blend_extent = int(self.tile_sample_min_size * self.decode_tile_overlap_factor)
row_limit = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, z.shape[3], overlap_size):
row = []
for j in range(0, z.shape[4], overlap_size):
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
if temporal_chunk:
decoded = self.chunk_decode(tile, window_size=window_size)
else:
tile = self.post_quant_conv(tile, is_init_image=True, temporal_chunk=False)
decoded = self.decoder(tile, is_init_image=True, temporal_chunk=False)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.FloatTensor,
sample_posterior: bool = True,
generator: Optional[torch.Generator] = None,
freeze_encoder: bool = False,
is_init_image=True,
temporal_chunk=False,
) -> Union[DecoderOutput, torch.FloatTensor]:
r"""
Args:
sample (`torch.FloatTensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
if is_context_parallel_initialized():
assert self.training, "Only supports during training now"
if freeze_encoder:
with torch.no_grad():
h = self.encoder(x, is_init_image=True, temporal_chunk=False)
moments = self.quant_conv(h, is_init_image=True, temporal_chunk=False)
posterior = DiagonalGaussianDistribution(moments)
global_posterior = posterior
else:
h = self.encoder(x, is_init_image=True, temporal_chunk=False)
moments = self.quant_conv(h, is_init_image=True, temporal_chunk=False)
posterior = DiagonalGaussianDistribution(moments)
global_moments = conv_gather_from_context_parallel_region(moments, dim=2, kernel_size=1)
global_posterior = DiagonalGaussianDistribution(global_moments)
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
if get_context_parallel_rank() == 0:
dec = self.decode(z, is_init_image=True).sample
else:
# Do not drop the first upsampled frame
dec = self.decode(z, is_init_image=False).sample
return global_posterior, dec
else:
# The normal training
if freeze_encoder:
with torch.no_grad():
posterior = self.encode(x, is_init_image=is_init_image,
temporal_chunk=temporal_chunk).latent_dist
else:
posterior = self.encode(x, is_init_image=is_init_image,
temporal_chunk=temporal_chunk).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, is_init_image=is_init_image, temporal_chunk=temporal_chunk).sample
return posterior, dec
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
|