Spaces:
Running
on
Zero
Running
on
Zero
from typing import Dict, Optional, Tuple, List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
try: | |
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func | |
from flash_attn.bert_padding import pad_input, unpad_input, index_first_axis | |
from flash_attn.flash_attn_interface import flash_attn_varlen_func | |
except: | |
flash_attn_func = None | |
flash_attn_qkvpacked_func = None | |
flash_attn_varlen_func = None | |
print("Please install flash attention") | |
from trainer_misc import ( | |
is_sequence_parallel_initialized, | |
get_sequence_parallel_group, | |
get_sequence_parallel_world_size, | |
all_to_all, | |
) | |
from .modeling_normalization import AdaLayerNormZero, AdaLayerNormContinuous, RMSNorm | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class VarlenFlashSelfAttentionWithT5Mask: | |
def __init__(self): | |
pass | |
def apply_rope(self, xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def __call__( | |
self, query, key, value, encoder_query, encoder_key, encoder_value, | |
heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None, | |
): | |
assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set" | |
batch_size = query.shape[0] | |
output_hidden = torch.zeros_like(query) | |
output_encoder_hidden = torch.zeros_like(encoder_query) | |
encoder_length = encoder_query.shape[1] | |
qkv_list = [] | |
num_stages = len(hidden_length) | |
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
i_sum = 0 | |
for i_p, length in enumerate(hidden_length): | |
encoder_qkv_tokens = encoder_qkv[i_p::num_stages] | |
qkv_tokens = qkv[:, i_sum:i_sum+length] | |
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim] | |
if image_rotary_emb is not None: | |
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) | |
indices = encoder_attention_mask[i_p]['indices'] | |
qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices)) | |
i_sum += length | |
token_lengths = [x_.shape[0] for x_ in qkv_list] | |
qkv = torch.cat(qkv_list, dim=0) | |
query, key, value = qkv.unbind(1) | |
cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0) | |
max_seqlen_q = cu_seqlens.max().item() | |
max_seqlen_k = max_seqlen_q | |
cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0)) | |
cu_seqlens_k = cu_seqlens_q.clone() | |
output = flash_attn_varlen_func( | |
query, | |
key, | |
value, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_q, | |
max_seqlen_k=max_seqlen_k, | |
dropout_p=0.0, | |
causal=False, | |
softmax_scale=scale, | |
) | |
# To merge the tokens | |
i_sum = 0;token_sum = 0 | |
for i_p, length in enumerate(hidden_length): | |
tot_token_num = token_lengths[i_p] | |
stage_output = output[token_sum : token_sum + tot_token_num] | |
stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length) | |
stage_encoder_hidden_output = stage_output[:, :encoder_length] | |
stage_hidden_output = stage_output[:, encoder_length:] | |
output_hidden[:, i_sum:i_sum+length] = stage_hidden_output | |
output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output | |
token_sum += tot_token_num | |
i_sum += length | |
output_hidden = output_hidden.flatten(2, 3) | |
output_encoder_hidden = output_encoder_hidden.flatten(2, 3) | |
return output_hidden, output_encoder_hidden | |
class SequenceParallelVarlenFlashSelfAttentionWithT5Mask: | |
def __init__(self): | |
pass | |
def apply_rope(self, xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def __call__( | |
self, query, key, value, encoder_query, encoder_key, encoder_value, | |
heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None, | |
): | |
assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set" | |
batch_size = query.shape[0] | |
qkv_list = [] | |
num_stages = len(hidden_length) | |
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
# To sync the encoder query, key and values | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] | |
output_hidden = torch.zeros_like(qkv[:,:,0]) | |
output_encoder_hidden = torch.zeros_like(encoder_qkv[:,:,0]) | |
encoder_length = encoder_qkv.shape[1] | |
i_sum = 0 | |
for i_p, length in enumerate(hidden_length): | |
# get the query, key, value from padding sequence | |
encoder_qkv_tokens = encoder_qkv[i_p::num_stages] | |
qkv_tokens = qkv[:, i_sum:i_sum+length] | |
qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] | |
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, pad_seq, 3, nhead, dim] | |
if image_rotary_emb is not None: | |
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) | |
indices = encoder_attention_mask[i_p]['indices'] | |
qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices)) | |
i_sum += length | |
token_lengths = [x_.shape[0] for x_ in qkv_list] | |
qkv = torch.cat(qkv_list, dim=0) | |
query, key, value = qkv.unbind(1) | |
cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0) | |
max_seqlen_q = cu_seqlens.max().item() | |
max_seqlen_k = max_seqlen_q | |
cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0)) | |
cu_seqlens_k = cu_seqlens_q.clone() | |
output = flash_attn_varlen_func( | |
query, | |
key, | |
value, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_q, | |
max_seqlen_k=max_seqlen_k, | |
dropout_p=0.0, | |
causal=False, | |
softmax_scale=scale, | |
) | |
# To merge the tokens | |
i_sum = 0;token_sum = 0 | |
for i_p, length in enumerate(hidden_length): | |
tot_token_num = token_lengths[i_p] | |
stage_output = output[token_sum : token_sum + tot_token_num] | |
stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length * sp_group_size) | |
stage_encoder_hidden_output = stage_output[:, :encoder_length] | |
stage_hidden_output = stage_output[:, encoder_length:] | |
stage_hidden_output = all_to_all(stage_hidden_output, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) | |
output_hidden[:, i_sum:i_sum+length] = stage_hidden_output | |
output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output | |
token_sum += tot_token_num | |
i_sum += length | |
output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) | |
output_hidden = output_hidden.flatten(2, 3) | |
output_encoder_hidden = output_encoder_hidden.flatten(2, 3) | |
return output_hidden, output_encoder_hidden | |
class VarlenSelfAttentionWithT5Mask: | |
""" | |
For chunk stage attention without using flash attention | |
""" | |
def __init__(self): | |
pass | |
def apply_rope(self, xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def __call__( | |
self, query, key, value, encoder_query, encoder_key, encoder_value, | |
heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None, | |
): | |
assert attention_mask is not None, "The attention mask needed to be set" | |
encoder_length = encoder_query.shape[1] | |
num_stages = len(hidden_length) | |
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
i_sum = 0 | |
output_encoder_hidden_list = [] | |
output_hidden_list = [] | |
for i_p, length in enumerate(hidden_length): | |
encoder_qkv_tokens = encoder_qkv[i_p::num_stages] | |
qkv_tokens = qkv[:, i_sum:i_sum+length] | |
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim] | |
if image_rotary_emb is not None: | |
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) | |
query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim] | |
query = query.transpose(1, 2) | |
key = key.transpose(1, 2) | |
value = value.transpose(1, 2) | |
# with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=False, enable_mem_efficient=True): | |
stage_hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p], | |
) | |
stage_hidden_states = stage_hidden_states.transpose(1, 2).flatten(2, 3) # [bs, tot_seq, dim] | |
output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length]) | |
output_hidden_list.append(stage_hidden_states[:, encoder_length:]) | |
i_sum += length | |
output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s d] | |
output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s d -> (b n) s d') | |
output_hidden = torch.cat(output_hidden_list, dim=1) | |
return output_hidden, output_encoder_hidden | |
class SequenceParallelVarlenSelfAttentionWithT5Mask: | |
""" | |
For chunk stage attention without using flash attention | |
""" | |
def __init__(self): | |
pass | |
def apply_rope(self, xq, xk, freqs_cis): | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
def __call__( | |
self, query, key, value, encoder_query, encoder_key, encoder_value, | |
heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None, | |
): | |
assert attention_mask is not None, "The attention mask needed to be set" | |
num_stages = len(hidden_length) | |
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim] | |
# To sync the encoder query, key and values | |
sp_group = get_sequence_parallel_group() | |
sp_group_size = get_sequence_parallel_world_size() | |
encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] | |
encoder_length = encoder_qkv.shape[1] | |
i_sum = 0 | |
output_encoder_hidden_list = [] | |
output_hidden_list = [] | |
for i_p, length in enumerate(hidden_length): | |
encoder_qkv_tokens = encoder_qkv[i_p::num_stages] | |
qkv_tokens = qkv[:, i_sum:i_sum+length] | |
qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim] | |
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim] | |
if image_rotary_emb is not None: | |
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p]) | |
query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim] | |
query = query.transpose(1, 2) | |
key = key.transpose(1, 2) | |
value = value.transpose(1, 2) | |
stage_hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p], | |
) | |
stage_hidden_states = stage_hidden_states.transpose(1, 2) # [bs, tot_seq, nhead, dim] | |
output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length]) | |
output_hidden = stage_hidden_states[:, encoder_length:] | |
output_hidden = all_to_all(output_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) | |
output_hidden_list.append(output_hidden) | |
i_sum += length | |
output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s nhead d] | |
output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s h d -> (b n) s h d') | |
output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2) | |
output_encoder_hidden = output_encoder_hidden.flatten(2, 3) | |
output_hidden = torch.cat(output_hidden_list, dim=1).flatten(2, 3) | |
return output_hidden, output_encoder_hidden | |
class JointAttention(nn.Module): | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias: bool = False, | |
qk_norm: Optional[str] = None, | |
added_kv_proj_dim: Optional[int] = None, | |
out_bias: bool = True, | |
eps: float = 1e-5, | |
out_dim: int = None, | |
context_pre_only=None, | |
use_flash_attn=True, | |
): | |
""" | |
Fixing the QKNorm, following the flux, norm the head dimension | |
""" | |
super().__init__() | |
self.inner_dim = out_dim if out_dim is not None else dim_head * heads | |
self.query_dim = query_dim | |
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.use_bias = bias | |
self.dropout = dropout | |
self.out_dim = out_dim if out_dim is not None else query_dim | |
self.context_pre_only = context_pre_only | |
self.scale = dim_head**-0.5 | |
self.heads = out_dim // dim_head if out_dim is not None else heads | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if qk_norm is None: | |
self.norm_q = None | |
self.norm_k = None | |
elif qk_norm == "layer_norm": | |
self.norm_q = nn.LayerNorm(dim_head, eps=eps) | |
self.norm_k = nn.LayerNorm(dim_head, eps=eps) | |
elif qk_norm == 'rms_norm': | |
self.norm_q = RMSNorm(dim_head, eps=eps) | |
self.norm_k = RMSNorm(dim_head, eps=eps) | |
else: | |
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'") | |
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) | |
self.to_k = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias) | |
self.to_v = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias) | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim) | |
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim) | |
if qk_norm is None: | |
self.norm_add_q = None | |
self.norm_add_k = None | |
elif qk_norm == "layer_norm": | |
self.norm_add_q = nn.LayerNorm(dim_head, eps=eps) | |
self.norm_add_k = nn.LayerNorm(dim_head, eps=eps) | |
elif qk_norm == 'rms_norm': | |
self.norm_add_q = RMSNorm(dim_head, eps=eps) | |
self.norm_add_k = RMSNorm(dim_head, eps=eps) | |
else: | |
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'") | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) | |
self.to_out.append(nn.Dropout(dropout)) | |
if not self.context_pre_only: | |
self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias) | |
self.use_flash_attn = use_flash_attn | |
if flash_attn_func is None: | |
self.use_flash_attn = False | |
# print(f"Using flash-attention: {self.use_flash_attn}") | |
if self.use_flash_attn: | |
if is_sequence_parallel_initialized(): | |
self.var_flash_attn = SequenceParallelVarlenFlashSelfAttentionWithT5Mask() | |
else: | |
self.var_flash_attn = VarlenFlashSelfAttentionWithT5Mask() | |
else: | |
if is_sequence_parallel_initialized(): | |
self.var_len_attn = SequenceParallelVarlenSelfAttentionWithT5Mask() | |
else: | |
self.var_len_attn = VarlenSelfAttentionWithT5Mask() | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
encoder_attention_mask: torch.FloatTensor = None, | |
attention_mask: torch.FloatTensor = None, # [B, L, S] | |
hidden_length: torch.Tensor = None, | |
image_rotary_emb: torch.Tensor = None, | |
**kwargs, | |
) -> torch.FloatTensor: | |
# This function is only used during training | |
# `sample` projections. | |
query = self.to_q(hidden_states) | |
key = self.to_k(hidden_states) | |
value = self.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // self.heads | |
query = query.view(query.shape[0], -1, self.heads, head_dim) | |
key = key.view(key.shape[0], -1, self.heads, head_dim) | |
value = value.view(value.shape[0], -1, self.heads, head_dim) | |
if self.norm_q is not None: | |
query = self.norm_q(query) | |
if self.norm_k is not None: | |
key = self.norm_k(key) | |
# `context` projections. | |
encoder_hidden_states_query_proj = self.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
encoder_hidden_states_query_proj.shape[0], -1, self.heads, head_dim | |
) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
encoder_hidden_states_key_proj.shape[0], -1, self.heads, head_dim | |
) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
encoder_hidden_states_value_proj.shape[0], -1, self.heads, head_dim | |
) | |
if self.norm_add_q is not None: | |
encoder_hidden_states_query_proj = self.norm_add_q(encoder_hidden_states_query_proj) | |
if self.norm_add_k is not None: | |
encoder_hidden_states_key_proj = self.norm_add_k(encoder_hidden_states_key_proj) | |
# To cat the hidden and encoder hidden, perform attention compuataion, and then split | |
if self.use_flash_attn: | |
hidden_states, encoder_hidden_states = self.var_flash_attn( | |
query, key, value, | |
encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, | |
encoder_hidden_states_value_proj, self.heads, self.scale, hidden_length, | |
image_rotary_emb, encoder_attention_mask, | |
) | |
else: | |
hidden_states, encoder_hidden_states = self.var_len_attn( | |
query, key, value, | |
encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, | |
encoder_hidden_states_value_proj, self.heads, self.scale, hidden_length, | |
image_rotary_emb, attention_mask, | |
) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
if not self.context_pre_only: | |
encoder_hidden_states = self.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
class JointTransformerBlock(nn.Module): | |
r""" | |
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. | |
Reference: https://arxiv.org/abs/2403.03206 | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the | |
processing of `context` conditions. | |
""" | |
def __init__( | |
self, dim, num_attention_heads, attention_head_dim, qk_norm=None, | |
context_pre_only=False, use_flash_attn=True, | |
): | |
super().__init__() | |
self.context_pre_only = context_pre_only | |
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" | |
self.norm1 = AdaLayerNormZero(dim) | |
if context_norm_type == "ada_norm_continous": | |
self.norm1_context = AdaLayerNormContinuous( | |
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" | |
) | |
elif context_norm_type == "ada_norm_zero": | |
self.norm1_context = AdaLayerNormZero(dim) | |
else: | |
raise ValueError( | |
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" | |
) | |
self.attn = JointAttention( | |
query_dim=dim, | |
cross_attention_dim=None, | |
added_kv_proj_dim=dim, | |
dim_head=attention_head_dim // num_attention_heads, | |
heads=num_attention_heads, | |
out_dim=attention_head_dim, | |
qk_norm=qk_norm, | |
context_pre_only=context_pre_only, | |
bias=True, | |
use_flash_attn=use_flash_attn, | |
) | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
if not context_pre_only: | |
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") | |
else: | |
self.norm2_context = None | |
self.ff_context = None | |
def forward( | |
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, | |
encoder_attention_mask: torch.FloatTensor, temb: torch.FloatTensor, | |
attention_mask: torch.FloatTensor = None, hidden_length: List = None, | |
image_rotary_emb: torch.FloatTensor = None, | |
): | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb, hidden_length=hidden_length) | |
if self.context_pre_only: | |
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) | |
else: | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb, | |
) | |
# Attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, attention_mask=attention_mask, | |
hidden_length=hidden_length, image_rotary_emb=image_rotary_emb, | |
) | |
# Process attention outputs for the `hidden_states`. | |
attn_output = gate_msa * attn_output | |
hidden_states = hidden_states + attn_output | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
ff_output = self.ff(norm_hidden_states) | |
ff_output = gate_mlp * ff_output | |
hidden_states = hidden_states + ff_output | |
# Process attention outputs for the `encoder_hidden_states`. | |
if self.context_pre_only: | |
encoder_hidden_states = None | |
else: | |
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output | |
encoder_hidden_states = encoder_hidden_states + context_attn_output | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
return encoder_hidden_states, hidden_states |