Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import os | |
from transformers import ( | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
T5EncoderModel, | |
T5TokenizerFast, | |
) | |
from typing import Any, Callable, Dict, List, Optional, Union | |
class SD3TextEncoderWithMask(nn.Module): | |
def __init__(self, model_path, torch_dtype): | |
super().__init__() | |
# CLIP-L | |
self.tokenizer = CLIPTokenizer.from_pretrained(os.path.join(model_path, 'tokenizer')) | |
self.tokenizer_max_length = self.tokenizer.model_max_length | |
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(os.path.join(model_path, 'text_encoder'), torch_dtype=torch_dtype) | |
# CLIP-G | |
self.tokenizer_2 = CLIPTokenizer.from_pretrained(os.path.join(model_path, 'tokenizer_2')) | |
self.text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(os.path.join(model_path, 'text_encoder_2'), torch_dtype=torch_dtype) | |
# T5 | |
self.tokenizer_3 = T5TokenizerFast.from_pretrained(os.path.join(model_path, 'tokenizer_3')) | |
self.text_encoder_3 = T5EncoderModel.from_pretrained(os.path.join(model_path, 'text_encoder_3'), torch_dtype=torch_dtype) | |
self._freeze() | |
def _freeze(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
def _get_t5_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]] = None, | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
max_sequence_length: int = 128, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
text_inputs = self.tokenizer_3( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_attention_mask = text_inputs.attention_mask | |
prompt_attention_mask = prompt_attention_mask.to(device) | |
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0] | |
dtype = self.text_encoder_3.dtype | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
_, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) | |
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
return prompt_embeds, prompt_attention_mask | |
def _get_clip_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]], | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
clip_skip: Optional[int] = None, | |
clip_model_index: int = 0, | |
): | |
clip_tokenizers = [self.tokenizer, self.tokenizer_2] | |
clip_text_encoders = [self.text_encoder, self.text_encoder_2] | |
tokenizer = clip_tokenizers[clip_model_index] | |
text_encoder = clip_text_encoders[clip_model_index] | |
batch_size = len(prompt) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
pooled_prompt_embeds = prompt_embeds[0] | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
return pooled_prompt_embeds | |
def encode_prompt(self, | |
prompt, | |
num_images_per_prompt=1, | |
clip_skip: Optional[int] = None, | |
device=None, | |
): | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
pooled_prompt_embed = self._get_clip_prompt_embeds( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
clip_skip=clip_skip, | |
clip_model_index=0, | |
) | |
pooled_prompt_2_embed = self._get_clip_prompt_embeds( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
clip_skip=clip_skip, | |
clip_model_index=1, | |
) | |
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) | |
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( | |
prompt=prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
) | |
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds | |
def forward(self, input_prompts, device): | |
with torch.no_grad(): | |
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.encode_prompt(input_prompts, 1, clip_skip=None, device=device) | |
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds |