pyramid-flow / pyramid_dit /modeling_mmdit_block.py
multimodalart's picture
Upload 33 files
f0533a5 verified
from typing import Dict, Optional, Tuple, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
try:
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
from flash_attn.bert_padding import pad_input, unpad_input, index_first_axis
from flash_attn.flash_attn_interface import flash_attn_varlen_func
except:
flash_attn_func = None
flash_attn_qkvpacked_func = None
flash_attn_varlen_func = None
print("Please install flash attention")
from trainer_misc import (
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_world_size,
all_to_all,
)
from .modeling_normalization import AdaLayerNormZero, AdaLayerNormContinuous, RMSNorm
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class VarlenFlashSelfAttentionWithT5Mask:
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None,
):
assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set"
batch_size = query.shape[0]
output_hidden = torch.zeros_like(query)
output_encoder_hidden = torch.zeros_like(encoder_query)
encoder_length = encoder_query.shape[1]
qkv_list = []
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
i_sum = 0
for i_p, length in enumerate(hidden_length):
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
indices = encoder_attention_mask[i_p]['indices']
qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices))
i_sum += length
token_lengths = [x_.shape[0] for x_ in qkv_list]
qkv = torch.cat(qkv_list, dim=0)
query, key, value = qkv.unbind(1)
cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0)
max_seqlen_q = cu_seqlens.max().item()
max_seqlen_k = max_seqlen_q
cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0))
cu_seqlens_k = cu_seqlens_q.clone()
output = flash_attn_varlen_func(
query,
key,
value,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=0.0,
causal=False,
softmax_scale=scale,
)
# To merge the tokens
i_sum = 0;token_sum = 0
for i_p, length in enumerate(hidden_length):
tot_token_num = token_lengths[i_p]
stage_output = output[token_sum : token_sum + tot_token_num]
stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length)
stage_encoder_hidden_output = stage_output[:, :encoder_length]
stage_hidden_output = stage_output[:, encoder_length:]
output_hidden[:, i_sum:i_sum+length] = stage_hidden_output
output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output
token_sum += tot_token_num
i_sum += length
output_hidden = output_hidden.flatten(2, 3)
output_encoder_hidden = output_encoder_hidden.flatten(2, 3)
return output_hidden, output_encoder_hidden
class SequenceParallelVarlenFlashSelfAttentionWithT5Mask:
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, encoder_attention_mask=None,
):
assert encoder_attention_mask is not None, "The encoder-hidden mask needed to be set"
batch_size = query.shape[0]
qkv_list = []
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
# To sync the encoder query, key and values
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
output_hidden = torch.zeros_like(qkv[:,:,0])
output_encoder_hidden = torch.zeros_like(encoder_qkv[:,:,0])
encoder_length = encoder_qkv.shape[1]
i_sum = 0
for i_p, length in enumerate(hidden_length):
# get the query, key, value from padding sequence
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, pad_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
indices = encoder_attention_mask[i_p]['indices']
qkv_list.append(index_first_axis(rearrange(concat_qkv_tokens, "b s ... -> (b s) ..."), indices))
i_sum += length
token_lengths = [x_.shape[0] for x_ in qkv_list]
qkv = torch.cat(qkv_list, dim=0)
query, key, value = qkv.unbind(1)
cu_seqlens = torch.cat([x_['seqlens_in_batch'] for x_ in encoder_attention_mask], dim=0)
max_seqlen_q = cu_seqlens.max().item()
max_seqlen_k = max_seqlen_q
cu_seqlens_q = F.pad(torch.cumsum(cu_seqlens, dim=0, dtype=torch.int32), (1, 0))
cu_seqlens_k = cu_seqlens_q.clone()
output = flash_attn_varlen_func(
query,
key,
value,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=0.0,
causal=False,
softmax_scale=scale,
)
# To merge the tokens
i_sum = 0;token_sum = 0
for i_p, length in enumerate(hidden_length):
tot_token_num = token_lengths[i_p]
stage_output = output[token_sum : token_sum + tot_token_num]
stage_output = pad_input(stage_output, encoder_attention_mask[i_p]['indices'], batch_size, encoder_length + length * sp_group_size)
stage_encoder_hidden_output = stage_output[:, :encoder_length]
stage_hidden_output = stage_output[:, encoder_length:]
stage_hidden_output = all_to_all(stage_hidden_output, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_hidden[:, i_sum:i_sum+length] = stage_hidden_output
output_encoder_hidden[i_p::num_stages] = stage_encoder_hidden_output
token_sum += tot_token_num
i_sum += length
output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_hidden = output_hidden.flatten(2, 3)
output_encoder_hidden = output_encoder_hidden.flatten(2, 3)
return output_hidden, output_encoder_hidden
class VarlenSelfAttentionWithT5Mask:
"""
For chunk stage attention without using flash attention
"""
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None,
):
assert attention_mask is not None, "The attention mask needed to be set"
encoder_length = encoder_query.shape[1]
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
i_sum = 0
output_encoder_hidden_list = []
output_hidden_list = []
for i_p, length in enumerate(hidden_length):
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim]
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
# with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=False, enable_mem_efficient=True):
stage_hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p],
)
stage_hidden_states = stage_hidden_states.transpose(1, 2).flatten(2, 3) # [bs, tot_seq, dim]
output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length])
output_hidden_list.append(stage_hidden_states[:, encoder_length:])
i_sum += length
output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s d]
output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s d -> (b n) s d')
output_hidden = torch.cat(output_hidden_list, dim=1)
return output_hidden, output_encoder_hidden
class SequenceParallelVarlenSelfAttentionWithT5Mask:
"""
For chunk stage attention without using flash attention
"""
def __init__(self):
pass
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def __call__(
self, query, key, value, encoder_query, encoder_key, encoder_value,
heads, scale, hidden_length=None, image_rotary_emb=None, attention_mask=None,
):
assert attention_mask is not None, "The attention mask needed to be set"
num_stages = len(hidden_length)
encoder_qkv = torch.stack([encoder_query, encoder_key, encoder_value], dim=2) # [bs, sub_seq, 3, head, head_dim]
qkv = torch.stack([query, key, value], dim=2) # [bs, sub_seq, 3, head, head_dim]
# To sync the encoder query, key and values
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
encoder_qkv = all_to_all(encoder_qkv, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
encoder_length = encoder_qkv.shape[1]
i_sum = 0
output_encoder_hidden_list = []
output_hidden_list = []
for i_p, length in enumerate(hidden_length):
encoder_qkv_tokens = encoder_qkv[i_p::num_stages]
qkv_tokens = qkv[:, i_sum:i_sum+length]
qkv_tokens = all_to_all(qkv_tokens, sp_group, sp_group_size, scatter_dim=3, gather_dim=1) # [bs, seq, 3, sub_head, head_dim]
concat_qkv_tokens = torch.cat([encoder_qkv_tokens, qkv_tokens], dim=1) # [bs, tot_seq, 3, nhead, dim]
if image_rotary_emb is not None:
concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1] = self.apply_rope(concat_qkv_tokens[:,:,0], concat_qkv_tokens[:,:,1], image_rotary_emb[i_p])
query, key, value = concat_qkv_tokens.unbind(2) # [bs, tot_seq, nhead, dim]
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
stage_hidden_states = F.scaled_dot_product_attention(
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask[i_p],
)
stage_hidden_states = stage_hidden_states.transpose(1, 2) # [bs, tot_seq, nhead, dim]
output_encoder_hidden_list.append(stage_hidden_states[:, :encoder_length])
output_hidden = stage_hidden_states[:, encoder_length:]
output_hidden = all_to_all(output_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_hidden_list.append(output_hidden)
i_sum += length
output_encoder_hidden = torch.stack(output_encoder_hidden_list, dim=1) # [b n s nhead d]
output_encoder_hidden = rearrange(output_encoder_hidden, 'b n s h d -> (b n) s h d')
output_encoder_hidden = all_to_all(output_encoder_hidden, sp_group, sp_group_size, scatter_dim=1, gather_dim=2)
output_encoder_hidden = output_encoder_hidden.flatten(2, 3)
output_hidden = torch.cat(output_hidden_list, dim=1).flatten(2, 3)
return output_hidden, output_encoder_hidden
class JointAttention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
out_bias: bool = True,
eps: float = 1e-5,
out_dim: int = None,
context_pre_only=None,
use_flash_attn=True,
):
"""
Fixing the QKNorm, following the flux, norm the head dimension
"""
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.use_bias = bias
self.dropout = dropout
self.out_dim = out_dim if out_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.scale = dim_head**-0.5
self.heads = out_dim // dim_head if out_dim is not None else heads
self.added_kv_proj_dim = added_kv_proj_dim
if qk_norm is None:
self.norm_q = None
self.norm_k = None
elif qk_norm == "layer_norm":
self.norm_q = nn.LayerNorm(dim_head, eps=eps)
self.norm_k = nn.LayerNorm(dim_head, eps=eps)
elif qk_norm == 'rms_norm':
self.norm_q = RMSNorm(dim_head, eps=eps)
self.norm_k = RMSNorm(dim_head, eps=eps)
else:
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_k = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
self.to_v = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
if self.added_kv_proj_dim is not None:
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
if qk_norm is None:
self.norm_add_q = None
self.norm_add_k = None
elif qk_norm == "layer_norm":
self.norm_add_q = nn.LayerNorm(dim_head, eps=eps)
self.norm_add_k = nn.LayerNorm(dim_head, eps=eps)
elif qk_norm == 'rms_norm':
self.norm_add_q = RMSNorm(dim_head, eps=eps)
self.norm_add_k = RMSNorm(dim_head, eps=eps)
else:
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
self.to_out.append(nn.Dropout(dropout))
if not self.context_pre_only:
self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)
self.use_flash_attn = use_flash_attn
if flash_attn_func is None:
self.use_flash_attn = False
# print(f"Using flash-attention: {self.use_flash_attn}")
if self.use_flash_attn:
if is_sequence_parallel_initialized():
self.var_flash_attn = SequenceParallelVarlenFlashSelfAttentionWithT5Mask()
else:
self.var_flash_attn = VarlenFlashSelfAttentionWithT5Mask()
else:
if is_sequence_parallel_initialized():
self.var_len_attn = SequenceParallelVarlenSelfAttentionWithT5Mask()
else:
self.var_len_attn = VarlenSelfAttentionWithT5Mask()
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None, # [B, L, S]
hidden_length: torch.Tensor = None,
image_rotary_emb: torch.Tensor = None,
**kwargs,
) -> torch.FloatTensor:
# This function is only used during training
# `sample` projections.
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // self.heads
query = query.view(query.shape[0], -1, self.heads, head_dim)
key = key.view(key.shape[0], -1, self.heads, head_dim)
value = value.view(value.shape[0], -1, self.heads, head_dim)
if self.norm_q is not None:
query = self.norm_q(query)
if self.norm_k is not None:
key = self.norm_k(key)
# `context` projections.
encoder_hidden_states_query_proj = self.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
encoder_hidden_states_query_proj.shape[0], -1, self.heads, head_dim
)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
encoder_hidden_states_key_proj.shape[0], -1, self.heads, head_dim
)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
encoder_hidden_states_value_proj.shape[0], -1, self.heads, head_dim
)
if self.norm_add_q is not None:
encoder_hidden_states_query_proj = self.norm_add_q(encoder_hidden_states_query_proj)
if self.norm_add_k is not None:
encoder_hidden_states_key_proj = self.norm_add_k(encoder_hidden_states_key_proj)
# To cat the hidden and encoder hidden, perform attention compuataion, and then split
if self.use_flash_attn:
hidden_states, encoder_hidden_states = self.var_flash_attn(
query, key, value,
encoder_hidden_states_query_proj, encoder_hidden_states_key_proj,
encoder_hidden_states_value_proj, self.heads, self.scale, hidden_length,
image_rotary_emb, encoder_attention_mask,
)
else:
hidden_states, encoder_hidden_states = self.var_len_attn(
query, key, value,
encoder_hidden_states_query_proj, encoder_hidden_states_key_proj,
encoder_hidden_states_value_proj, self.heads, self.scale, hidden_length,
image_rotary_emb, attention_mask,
)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if not self.context_pre_only:
encoder_hidden_states = self.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
class JointTransformerBlock(nn.Module):
r"""
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
processing of `context` conditions.
"""
def __init__(
self, dim, num_attention_heads, attention_head_dim, qk_norm=None,
context_pre_only=False, use_flash_attn=True,
):
super().__init__()
self.context_pre_only = context_pre_only
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
self.norm1 = AdaLayerNormZero(dim)
if context_norm_type == "ada_norm_continous":
self.norm1_context = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif context_norm_type == "ada_norm_zero":
self.norm1_context = AdaLayerNormZero(dim)
else:
raise ValueError(
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
)
self.attn = JointAttention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim // num_attention_heads,
heads=num_attention_heads,
out_dim=attention_head_dim,
qk_norm=qk_norm,
context_pre_only=context_pre_only,
bias=True,
use_flash_attn=use_flash_attn,
)
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
if not context_pre_only:
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_context = None
self.ff_context = None
def forward(
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor,
encoder_attention_mask: torch.FloatTensor, temb: torch.FloatTensor,
attention_mask: torch.FloatTensor = None, hidden_length: List = None,
image_rotary_emb: torch.FloatTensor = None,
):
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb, hidden_length=hidden_length)
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
else:
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb,
)
# Attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask, attention_mask=attention_mask,
hidden_length=hidden_length, image_rotary_emb=image_rotary_emb,
)
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return encoder_hidden_states, hidden_states