import os import torch import gradio as gr from PIL import Image, ImageOps from huggingface_hub import snapshot_download from pyramid_dit import PyramidDiTForVideoGeneration from diffusers.utils import export_to_video import spaces import uuid import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) is_canonical = True if os.environ.get("SPACE_ID") == "multimodalart/pyramid-flow" else False # Constants MODEL_PATH = "pyramid-flow-model" MODEL_REPO = "rain1011/pyramid-flow-sd3" MODEL_VARIANT = "diffusion_transformer_768p" MODEL_DTYPE = "bf16" def center_crop(image, target_width, target_height): width, height = image.size aspect_ratio_target = target_width / target_height aspect_ratio_image = width / height if aspect_ratio_image > aspect_ratio_target: # Crop the width (left and right) new_width = int(height * aspect_ratio_target) left = (width - new_width) // 2 right = left + new_width top, bottom = 0, height else: # Crop the height (top and bottom) new_height = int(width / aspect_ratio_target) top = (height - new_height) // 2 bottom = top + new_height left, right = 0, width image = image.crop((left, top, right, bottom)) return image # Download and load the model def load_model(): if not os.path.exists(MODEL_PATH): snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model') model = PyramidDiTForVideoGeneration( MODEL_PATH, MODEL_DTYPE, model_variant=MODEL_VARIANT, ) model.vae.to("cuda") model.dit.to("cuda") model.text_encoder.to("cuda") model.vae.enable_tiling() return model # Global model variable model = load_model() # Text-to-video generation function @spaces.GPU(duration=120) def generate_video(image, prompt, duration, guidance_scale, video_guidance_scale): multiplier = 0.8 if is_canonical else 2.4 temp = int(duration * 0.8) # Convert seconds to temp value (assuming 24 FPS) torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 if(image): cropped_image = center_crop(image, 1280, 720) resized_image = cropped_image.resize((1280, 720)) with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): frames = model.generate_i2v( prompt=prompt, input_image=resized_image, num_inference_steps=[10, 10, 10], temp=temp, guidance_scale=7.0, video_guidance_scale=video_guidance_scale, output_type="pil", save_memory=True, ) else: with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): frames = model.generate( prompt=prompt, num_inference_steps=[20, 20, 20], video_num_inference_steps=[10, 10, 10], height=768, width=1280, temp=temp, guidance_scale=guidance_scale, video_guidance_scale=video_guidance_scale, output_type="pil", save_memory=True, ) output_path = f"{str(uuid.uuid4())}_output_video.mp4" export_to_video(frames, output_path, fps=8) return output_path # Image-to-video generation function #@spaces.GPU(duration=240) #def generate_video_from_image(image, prompt, duration, video_guidance_scale): # temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS) # torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32 # # target_size = (1280, 720) # cropped_image = center_crop(image, 1280, 720) # resized_image = cropped_image.resize((1280, 720)) # # with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): # frames = model.generate_i2v( # prompt=prompt, # input_image=resized_image, # num_inference_steps=[10, 10, 10], # temp=temp, # guidance_scale=7.0, # video_guidance_scale=video_guidance_scale, # output_type="pil", # save_memory=True, # ) output_path = "output_video_i2v.mp4" export_to_video(frames, output_path, fps=24) return output_path # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Pyramid Flow text-to-video demo") gr.Markdown("[[Paper](https://arxiv.org/pdf/2410.05954)], [[Model](https://huggingface.co/rain1011/pyramid-flow-sd3)], [Code[https://github.com/jy0205/Pyramid-Flow]]") #with gr.Tab("Text-to-Video"): with gr.Row(): with gr.Column(): with gr.Accordion("Image to Video (optional)", open=False): i2v_image = gr.Image(type="pil", label="Input Image") t2v_prompt = gr.Textbox(label="Prompt") with gr.Accordion("Advanced settings", open=False): t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)", visible=not is_canonical) t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale") t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale") t2v_generate_btn = gr.Button("Generate Video") with gr.Column(): t2v_output = gr.Video(label="Generated Video") gr.HTML("""
""") t2v_generate_btn.click( generate_video, inputs=[i2v_image, t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale], outputs=t2v_output ) #with gr.Tab("Image-to-Video"): # with gr.Row(): # with gr.Column(): # i2v_prompt = gr.Textbox(label="Prompt") # i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)") # i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale") # i2v_generate_btn = gr.Button("Generate Video") # with gr.Column(): # i2v_output = gr.Video(label="Generated Video") #i2v_generate_btn.click( # generate_video_from_image, # inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale], # outputs=i2v_output #) demo.launch()