zero-shot / app.py
sotosbarl's picture
Update app.py
47cfcec verified
raw
history blame
1.71 kB
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import pickle
import streamlit as st
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForSequenceClassification.from_pretrained(model_name)
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
# with open('chapter_titles.pkl', 'rb') as file:
# titles_astiko = pickle.load(file)
# labels1 = ["κληρονομικό", "ακίνητα", "διαζύγιο"]
# # labels2 = ["αποδοχή κληρονομιάς", "αποποίηση", "διαθήκη"]
# # labels3 = ["μίσθωση", "κυριότητα", "έξωση", "απλήρωτα νοίκια"]
# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"]
# Load dictionary from the file using pickle
with open('my_dict.pickle', 'rb') as file:
dictionary = pickle.load(file)
def classify(text,labels):
output = classifier(text, labels, multi_label=False)
return output
text = st.text_input('Enter some text:') # Input field for new text
if text:
labels = list(dictionary)
output = classify(text,labels)
output = output["labels"][0]
labels = list(dictionary[output])
output2 = classify(text,labels)
output2 = output2["labels"][0]
answer = dictionary[output][output2]
st.text(output)
st.text(output2)
st.text(answer)