Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
import torch
|
3 |
+
import streamlit as st
|
4 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
5 |
+
|
6 |
+
model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
def classify(text)
|
11 |
+
input = tokenizer(text, truncation=True, return_tensors="pt")
|
12 |
+
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
|
13 |
+
prediction = torch.softmax(output["logits"][0], -1).tolist()
|
14 |
+
label_names = ["θυμός", "χαρά", "λύπη"]
|
15 |
+
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
|
16 |
+
return prediction
|
17 |
+
|
18 |
+
|
19 |
+
text = st.text_input('Enter some text:') # Input field for new text
|
20 |
+
if text:
|
21 |
+
st.text(classify(text))
|