File size: 15,624 Bytes
fe11059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d561367
fe11059
 
 
 
 
 
 
 
 
 
99e4f59
fe11059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c89faf6
fe11059
 
 
 
 
 
c89faf6
fe11059
 
 
 
c4d15fc
 
c89faf6
c4d15fc
 
 
 
c7696c8
fe11059
 
 
c89faf6
fe11059
 
 
 
 
 
c89faf6
fe11059
 
 
 
 
 
ba196b5
fe11059
 
 
 
 
 
f2af3e6
fe11059
b9a721a
 
fe11059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e3571
fe11059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8483b
 
fe11059
 
 
 
 
 
 
 
 
20dc861
f2af3e6
 
fe11059
f2af3e6
74014dd
20dc861
fe11059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab23d72
fe11059
 
ab23d72
fe11059
 
ab23d72
fe11059
 
ab23d72
fe11059
 
ab23d72
fe11059
 
ab23d72
fe11059
ab23d72
fe11059
 
 
78e484a
fe11059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04fae7a
fe11059
 
04fae7a
ffcba18
c89faf6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import streamlit as st


st.set_page_config(
    layout="centered",  # Can be "centered" or "wide". In the future also "dashboard", etc.
    initial_sidebar_state="auto",  # Can be "auto", "expanded", "collapsed"
    page_title='Extractive Summarization',  # String or None. Strings get appended with "• Streamlit".
    page_icon='./favicon.png',  # String, anything supported by st.image, or None.
)


import pandas as pd
import numpy as np
import json 
import os
import sys
sys.path.append(os.path.abspath('./'))
import streamlit_apps_config as config
from streamlit_ner_output import show_html2, jsl_display_annotations, get_color

import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.sql import functions as F
from sparknlp_display import NerVisualizer
from pyspark.ml import Pipeline
from pyspark.sql.types import StringType

spark= sparknlp.start()

## Marking down NER Style
st.markdown(config.STYLE_CONFIG, unsafe_allow_html=True)

root_path = config.project_path

########## To Remove the Main Menu Hamburger ########

hide_menu_style = """
        <style>
        #MainMenu {visibility: hidden;}
        </style>
        """
st.markdown(hide_menu_style, unsafe_allow_html=True)

########## Side Bar ########

## loading logo(newer version with href)
import base64
@st.cache(allow_output_mutation=True)
def get_base64_of_bin_file(bin_file):
    with open(bin_file, 'rb') as f:
        data = f.read()
    return base64.b64encode(data).decode()

@st.cache(allow_output_mutation=True)
def get_img_with_href(local_img_path, target_url):
    img_format = os.path.splitext(local_img_path)[-1].replace('.', '')
    bin_str = get_base64_of_bin_file(local_img_path)
    html_code = f'''
        <a href="{target_url}">
            <img height="90%" width="90%" src="data:image/{img_format};base64,{bin_str}" />
        </a>'''
    return html_code

logo_html = get_img_with_href('./jsl-logo.png', 'https://www.johnsnowlabs.com/')
st.sidebar.markdown(logo_html, unsafe_allow_html=True)



#sidebar info
model_name= ["nerdl_fewnerd_100d", "ner_conll_elmo", "ner_mit_movie_complex_distilbert_base_cased", "ner_conll_albert_large_uncased", "onto_100"]
st.sidebar.title("Pretrained model to test")
selected_model = st.sidebar.selectbox("", model_name)

######## Main Page #########

if selected_model == "nerdl_fewnerd_100d":
    app_title= "Detect up to 8 entity types in general domain texts"
    app_description= "Named Entity Recognition model aimed to detect up to 8 entity types from general domain texts. This model was trained on the Few-NERD/inter public dataset using Spark NLP, and it is available in Spark NLP Models hub. "
    st.title(app_title)
    st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
    st.markdown("**`PERSON`**   **,** **`ORGANIZATION`**    **,**  **`LOCATION`** **,**  **`ART`** **,**  **`BUILDING`** **,**  **`PRODUCT`** **,**  **`EVENT`** **,**  **`OTHER`**", unsafe_allow_html=True)

elif selected_model== "ner_conll_elmo":
    app_title= "Detect up to 4 entity types in general domain texts"
    app_description= "Named Entity Recognition model aimed to detect up to 4 entity types from general domain texts. This model was trained on the CoNLL 2003 text corpus using Spark NLP, and it is available in Spark NLP Models hub. "
    st.title(app_title)
    st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
    st.markdown("**`PER`**   **,** **`LOC`**    **,**  **`ORG`** **,**  **`MISC` **", unsafe_allow_html=True)

elif selected_model== "ner_mit_movie_complex_distilbert_base_cased":
    app_title= "Detect up to 12 entity types in movie domain texts"
    app_description= "Named Entity Recognition model aimed to detect up to 12 entity types from movie domain texts. This model was trained on the MIT Movie Corpus complex queries dataset to detect movie trivia using Spark NLP, and it is available in Spark NLP Models hub. "
    st.title(app_title)
    st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
    st.markdown("""**`ACTOR`**   **,** **`AWARD`**    **,**  **`CHARACTER_NAME`** **,**  **`DIRECTOR`** **,**  **`GENRE`** **,**  **`OPINION`** **,**  **`ORIGIN`** **,**  **`PLOT`**,
                    **`QUOTE`**   **,** **`RELATIONSHIP`**    **,**  **`SOUNDTRACK`** **,**  **`YEAR`  **""", unsafe_allow_html=True)


elif selected_model=="ner_conll_albert_large_uncased":
    app_title= "Detect up to 4 entity types in general domain texts"
    app_description= "Named Entity Recognition model aimed to detect up to 4 entity types from general domain texts. This model was trained on the CoNLL 2003 text corpus using Spark NLP, and it is available in Spark NLP Models hub. "
    st.title(app_title)
    st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
    st.markdown("**`PER`**   **,** **`LOC`**    **,**  **`ORG`** **,**  **`MISC` **", unsafe_allow_html=True)

elif selected_model=="onto_100":
    app_title= "Detect up to 18 entity types in general domain texts"
    app_description= "Named Entity Recognition model aimed to detect up to 18 entity types from general domain texts. This model was trained with GloVe 100d word embeddings using Spark NLP, so be sure to use same embeddings in the pipeline. It is available in Spark NLP Models hub. "
    st.title(app_title)
    st.markdown("<h2>"+app_description+"</h2>" , unsafe_allow_html=True)
    st.markdown("""**`CARDINAL`**   **,** **`EVENT`**    **,**  **`WORK_OF_ART`** **,**  **`ORG`** **,**  **`DATE`** **,**  **`GPE`** **,**  **`PERSON`** **,**  **`PRODUCT`**,
                    **`NORP`**   **,** **`ORDINAL`**    **,**  **`MONEY`** **,**  **`LOC`  **, **`FAC`**   **,** **`LAW`**    **,**  **`TIME`** **,**  **`PERCENT`** **,**  **`QUANTITY`** **,**  **`LANGUAGE`  **""", unsafe_allow_html=True)


st.subheader("")





#caching the models in the dictionary
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_sparknlp_models():
    ner_models_list= ["nerdl_fewnerd_100d", "ner_conll_elmo", "ner_mit_movie_complex_distilbert_base_cased",         
                      "ner_conll_albert_large_uncased", "onto_100"]
    embeddings_list= ["glove_100d", "elmo", "distilbert_base_cased", "albert_large_uncased", "glove_100d_for_onto"]


    documentAssembler = DocumentAssembler()\
        .setInputCol("text")\
        .setOutputCol("document")

    sentenceDetector= SentenceDetector()\
        .setInputCols(["document"])\
        .setOutputCol("sentence")

    tokenizer = Tokenizer()\
        .setInputCols(["sentence"])\
        .setOutputCol("token")

    ner_converter= NerConverter()\
        .setInputCols(["document", "token", "ner"])\
        .setOutputCol("ner_chunk")

    model_dict= {
        'documentAssembler': documentAssembler,
        'sentenceDetector': sentenceDetector,
        'tokenizer': tokenizer,
        'ner_converter': ner_converter
    }

    for embeddings_name, ner_model_name in zip(embeddings_list, ner_models_list):

        try:
          if embeddings_name=="glove_100d":
            model_dict[embeddings_name]= WordEmbeddingsModel.pretrained(embeddings_name, "en")\
                                                  .setInputCols(["sentence", "token"])\
                                                  .setOutputCol("embeddings")

          elif embeddings_name=="elmo":
            model_dict[embeddings_name]= ElmoEmbeddings.pretrained(embeddings_name, "en")\
                                                  .setInputCols(["token", "document"])\
                                                  .setOutputCol("embeddings")\
                                                  .setPoolingLayer("elmo")

          elif embeddings_name=="distilbert_base_cased":
              model_dict[embeddings_name]= DistilBertEmbeddings\
                                                   .pretrained(embeddings_name, 'en')\
                                                   .setInputCols(["token", "document"])\
                                                   .setOutputCol("embeddings")

          elif embeddings_name=="albert_large_uncased":
              model_dict[embeddings_name]= AlbertEmbeddings\
                                                    .pretrained(embeddings_name, 'en')\
                                                    .setInputCols(["document", "token"])\
                                                    .setOutputCol("embeddings")

          elif embeddings_name=="glove_100d_for_onto":
              model_dict[embeddings_name]= WordEmbeddingsModel.pretrained("glove_100d", "en")\
                                                    .setInputCols(["sentence", "token"])\
                                                    .setOutputCol("embeddings")


          model_dict[ner_model_name]= NerDLModel.pretrained(ner_model_name, "en")\
                                              .setInputCols(["document", "token", "embeddings"])\
                                              .setOutputCol("ner")

          
        except:
            pass
    return model_dict



placeholder_= st.empty()
placeholder_.info("If you are launching the app for the first time, it may take some time (approximately 1 minute) for SparkNLP models to load...")
nlp_dict= load_sparknlp_models()
placeholder_.empty()




if selected_model=="ner_conll_albert_large_uncased":
    text= st.text_input("Type here your text and press enter to run:", value="Mark Knopfler was born in Glasgow, Scotland. He is a British singer-songwriter, guitarist, and record producer. He became known as the lead guitarist, singer and songwriter of the rock band Dire Straits.")

elif selected_model=="ner_mit_movie_complex_distilbert_base_cased":
    text= st.text_input("Type here your text and press enter to run:", value="It's only appropriate that Solaris, Russian filmmaker Andrei Tarkovsky's psychological sci-fi classic from 1972, contains an equally original and mind-bending score. Solaris explores the inadequacies of time and memory on an enigmatic planet below a derelict space station. To reinforce the film's chilling setting, Tarkovsky commissioned composer Eduard Artemiev to construct an electronic soundscape reflecting planet Solaris' amorphous and mysterious surface")

elif selected_model=="ner_conll_elmo":
    text= st.text_input("Type here your text and press enter to run: ", value="Tottenham Hotspur Football Club, commonly referred to as Tottenham or Spurs, is an English professional football club based in Tottenham, London, that competes in the Premier League, the top flight of English football.")

elif selected_model=="onto_100":
    text= st.text_input("Type here your text and press enter to run: ", value="William Henry Gates III (born October 28, 1955) is an American business magnate, software developer, investor, and philanthropist. He is best known as the co-founder of Microsoft Corporation. During his career at Microsoft, Gates held the positions of chairman, chief executive officer (CEO), president and chief software architect, while also being the largest individual shareholder until May 2014. He is one of the best-known entrepreneurs and pioneers of the microcomputer revolution of the 1970s and 1980s. Born and raised in Seattle, Washington, Gates co-founded Microsoft with childhood friend Paul Allen in 1975, in Albuquerque, New Mexico; it went on to become the world's largest personal computer software company. Gates led the company as chairman and CEO until stepping down as CEO in January 2000, but he remained chairman and became chief software architect.")

else:
    text= st.text_input("Type here your text and press enter to run:", value="12 Corazones ('12 Hearts') is Spanish-language dating game show produced in the United States for the television network Telemundo since January 2005, based on its namesake Argentine TV show format. The show is filmed in Los Angeles and revolves around the twelve Zodiac signs that identify each contestant. In 2008, Ho filmed a cameo in the Steven Spielberg feature film The Cloverfield Paradox, as a news pundit.")



def build_pipeline(text, model_name=selected_model):

    base_pipeline= Pipeline(stages=[
                           nlp_dict["documentAssembler"],
                           nlp_dict["sentenceDetector"],
                           nlp_dict["tokenizer"]
                            ])

    fewnerd_pipeline= Pipeline(stages=[
                           base_pipeline,
                           nlp_dict["glove_100d"],
                           nlp_dict[model_name],
                           nlp_dict["ner_converter"]
                            ])

    elmo_pipeline= Pipeline(stages=[
                           base_pipeline,
                           nlp_dict["elmo"],
                           nlp_dict[model_name],
                           nlp_dict["ner_converter"]
                            ])
                        
    movie_pipeline= Pipeline(stages=[
                           base_pipeline,
                           nlp_dict["distilbert_base_cased"],
                           nlp_dict[model_name],
                           nlp_dict["ner_converter"]
                            ])

    albert_pipeline= Pipeline(stages=[
                           base_pipeline,
                           nlp_dict["albert_large_uncased"],
                           nlp_dict[model_name],
                           nlp_dict["ner_converter"]
                            ])

    onto_pipeline= Pipeline(stages=[
                           base_pipeline,
                           nlp_dict["glove_100d_for_onto"],
                           nlp_dict[model_name],
                           nlp_dict["ner_converter"]
                            ])

    
    text_df = spark.createDataFrame([[text]]).toDF("text")

    if model_name=="nerdl_fewnerd_100d":
        pipeline_model= fewnerd_pipeline.fit(text_df)

    elif model_name=="ner_conll_elmo":
        pipeline_model=  elmo_pipeline.fit(text_df)

    elif model_name=="ner_mit_movie_complex_distilbert_base_cased":
        pipeline_model= movie_pipeline.fit(text_df)

    elif model_name=="ner_conll_albert_large_uncased":
        pipeline_model= albert_pipeline.fit(text_df)

    elif model_name=="onto_100":
        pipeline_model= onto_pipeline.fit(text_df)

    result = pipeline_model.transform(text_df).toPandas()

    return result

#placeholder for warning
placeholder= st.empty()
placeholder.info("Processing...")

result= build_pipeline(text)
placeholder.empty()

df= pd.DataFrame({"ner_chunk": result["ner_chunk"].iloc[0]})

labels_set = set()
for i in df['ner_chunk'].values:
    labels_set.add(i[4]['entity'])
labels_set = list(labels_set)

labels = st.sidebar.multiselect(
        "NER Labels", options=labels_set, default=list(labels_set)
    )

show_html2(text, df, labels, "Text annotated with identified Named Entities")

try_link="""<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/Certification_Trainings/Public/3.SparkNLP_Pretrained_Models.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/></a>"""
st.sidebar.title('')
st.sidebar.markdown("<h1> Try it yourself: </h1>" , unsafe_allow_html=True)
st.sidebar.markdown(try_link, unsafe_allow_html=True)

st.sidebar.info("""Want to see more? 
- Check Spark NLP in action, including our Spark NLP for Healthcare & Spark OCR demos at [here](https://nlp.johnsnowlabs.com/demos)
- Check our 4.4K+ models available in Spark NLP Models Hub [here](https://nlp.johnsnowlabs.com/models)""")