Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import logging | |
import pprint | |
from huggingface_hub import snapshot_download | |
logging.getLogger("openai").setLevel(logging.WARNING) | |
# from src.backend.run_eval_suite import run_evaluation | |
# from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request | |
# from src.backend.sort_queue import sort_models_by_priority | |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN | |
from src.about import Tasks, NUM_FEWSHOT | |
TASKS_HARNESS = [task.value.benchmark for task in Tasks] | |
logging.basicConfig(level=logging.ERROR) | |
pp = pprint.PrettyPrinter(width=80) | |
PENDING_STATUS = "PENDING" | |
RUNNING_STATUS = "RUNNING" | |
FINISHED_STATUS = "FINISHED" | |
FAILED_STATUS = "FAILED" | |
print('Downloading results and requests.') | |
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) | |
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) | |
# def run_auto_eval(): | |
# current_pending_status = [PENDING_STATUS] | |
# | |
# # pull the eval dataset from the hub and parse any eval requests | |
# # check completed evals and set them to finished | |
# check_completed_evals( | |
# api=API, | |
# checked_status=RUNNING_STATUS, | |
# completed_status=FINISHED_STATUS, | |
# failed_status=FAILED_STATUS, | |
# hf_repo=QUEUE_REPO, | |
# local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
# hf_repo_results=RESULTS_REPO, | |
# local_dir_results=EVAL_RESULTS_PATH_BACKEND | |
# ) | |
# | |
# # Get all eval request that are PENDING, if you want to run other evals, change this parameter | |
# eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
# # Sort the evals by priority (first submitted first run) | |
# eval_requests = sort_models_by_priority(api=API, models=eval_requests) | |
# | |
# print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") | |
# | |
# if len(eval_requests) == 0: | |
# return | |
# | |
# eval_request = eval_requests[0] | |
# pp.pprint(eval_request) | |
# | |
# set_eval_request( | |
# api=API, | |
# eval_request=eval_request, | |
# set_to_status=RUNNING_STATUS, | |
# hf_repo=QUEUE_REPO, | |
# local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
# ) | |
# | |
# run_evaluation( | |
# eval_request=eval_request, | |
# task_names=TASKS_HARNESS, | |
# num_fewshot=NUM_FEWSHOT, | |
# local_dir=EVAL_RESULTS_PATH_BACKEND, | |
# results_repo=RESULTS_REPO, | |
# batch_size=1, | |
# device=DEVICE, | |
# no_cache=True, | |
# limit=LIMIT | |
# ) | |
# | |
# | |
# if __name__ == "__main__": | |
# run_auto_eval() |