Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
Clémentine
commited on
Commit
•
943f952
1
Parent(s):
314f91a
update read
Browse files- README.md +24 -3
- src/display/about.py +5 -3
- src/leaderboard/read_evals.py +5 -9
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
@@ -12,4 +12,25 @@ license: apache-2.0
|
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
|
15 |
-
Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Demo Leaderboard
|
3 |
+
emoji: 🥇
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
|
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
|
15 |
+
Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
|
16 |
+
|
17 |
+
Results files should have the following format:
|
18 |
+
```
|
19 |
+
{
|
20 |
+
"config": {
|
21 |
+
"model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
|
22 |
+
"model_name": "path of the model on the hub: org/model",
|
23 |
+
"model_sha": "revision on the hub",
|
24 |
+
},
|
25 |
+
"results": {
|
26 |
+
"task_name": {
|
27 |
+
"metric_name": score,
|
28 |
+
},
|
29 |
+
"task_name2": {
|
30 |
+
"metric_name": score,
|
31 |
+
}
|
32 |
+
}
|
33 |
+
}
|
34 |
+
```
|
35 |
+
|
36 |
+
Request files are created automatically by this tool.
|
src/display/about.py
CHANGED
@@ -10,15 +10,17 @@ class Task:
|
|
10 |
|
11 |
# Init: to update with your specific keys
|
12 |
class Tasks(Enum):
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
|
17 |
# Your leaderboard name
|
18 |
-
TITLE = """<h1 align="center" id="space-title">
|
19 |
|
20 |
# What does your leaderboard evaluate?
|
21 |
INTRODUCTION_TEXT = """
|
|
|
22 |
"""
|
23 |
|
24 |
# Which evaluations are you running? how can people reproduce what you have?
|
|
|
10 |
|
11 |
# Init: to update with your specific keys
|
12 |
class Tasks(Enum):
|
13 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
14 |
+
task0 = Task("task_name1", "metric_name", "First task")
|
15 |
+
task1 = Task("task_name2", "metric_name", "Second task")
|
16 |
|
17 |
|
18 |
# Your leaderboard name
|
19 |
+
TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
|
20 |
|
21 |
# What does your leaderboard evaluate?
|
22 |
INTRODUCTION_TEXT = """
|
23 |
+
Intro text
|
24 |
"""
|
25 |
|
26 |
# Which evaluations are you running? how can people reproduce what you have?
|
src/leaderboard/read_evals.py
CHANGED
@@ -5,8 +5,6 @@ import os
|
|
5 |
from dataclasses import dataclass
|
6 |
|
7 |
import dateutil
|
8 |
-
from datetime import datetime
|
9 |
-
from transformers import AutoConfig
|
10 |
import numpy as np
|
11 |
|
12 |
from src.display.formatting import make_clickable_model
|
@@ -16,7 +14,6 @@ from src.submission.check_validity import is_model_on_hub
|
|
16 |
|
17 |
@dataclass
|
18 |
class EvalResult:
|
19 |
-
# Also see src.display.utils.AutoEvalColumn for what will be displayed.
|
20 |
eval_name: str # org_model_precision (uid)
|
21 |
full_model: str # org/model (path on hub)
|
22 |
org: str
|
@@ -26,7 +23,7 @@ class EvalResult:
|
|
26 |
precision: Precision = Precision.Unknown
|
27 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
28 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
29 |
-
architecture: str = "Unknown"
|
30 |
license: str = "?"
|
31 |
likes: int = 0
|
32 |
num_params: int = 0
|
@@ -39,8 +36,7 @@ class EvalResult:
|
|
39 |
with open(json_filepath) as fp:
|
40 |
data = json.load(fp)
|
41 |
|
42 |
-
|
43 |
-
config = data.get("config", data.get("config_general", None))
|
44 |
|
45 |
# Precision
|
46 |
precision = Precision.from_str(config.get("model_dtype"))
|
@@ -59,7 +55,7 @@ class EvalResult:
|
|
59 |
result_key = f"{org}_{model}_{precision.value.name}"
|
60 |
full_model = "/".join(org_and_model)
|
61 |
|
62 |
-
still_on_hub,
|
63 |
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
64 |
)
|
65 |
architecture = "?"
|
@@ -73,8 +69,8 @@ class EvalResult:
|
|
73 |
for task in Tasks:
|
74 |
task = task.value
|
75 |
|
76 |
-
# We average all scores of a given metric
|
77 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark
|
78 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
79 |
continue
|
80 |
|
|
|
5 |
from dataclasses import dataclass
|
6 |
|
7 |
import dateutil
|
|
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
|
|
14 |
|
15 |
@dataclass
|
16 |
class EvalResult:
|
|
|
17 |
eval_name: str # org_model_precision (uid)
|
18 |
full_model: str # org/model (path on hub)
|
19 |
org: str
|
|
|
23 |
precision: Precision = Precision.Unknown
|
24 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
25 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
26 |
+
architecture: str = "Unknown"
|
27 |
license: str = "?"
|
28 |
likes: int = 0
|
29 |
num_params: int = 0
|
|
|
36 |
with open(json_filepath) as fp:
|
37 |
data = json.load(fp)
|
38 |
|
39 |
+
config = data.get("config")
|
|
|
40 |
|
41 |
# Precision
|
42 |
precision = Precision.from_str(config.get("model_dtype"))
|
|
|
55 |
result_key = f"{org}_{model}_{precision.value.name}"
|
56 |
full_model = "/".join(org_and_model)
|
57 |
|
58 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
59 |
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
60 |
)
|
61 |
architecture = "?"
|
|
|
69 |
for task in Tasks:
|
70 |
task = task.value
|
71 |
|
72 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
73 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
74 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
75 |
continue
|
76 |
|