OCR_app / app.py
srimanth-d's picture
Update app.py
0d5f352 verified
raw
history blame
5.65 kB
import re
import streamlit as st # Importing required libraries
from transformers import AutoModel, AutoTokenizer
import io
#import logging
from PIL import Image
# Configure logging for error handling
#logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
# Helper function for logging and displaying errors
def handle_error(error_message):
#logging.error(error_message)
st.error(f"An error occurred: {error_message}")
# Cache the model and tokenizer to avoid reloading on every run
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
model = AutoModel.from_pretrained("srimanth-d/GOT_CPU", trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=151643)
model.eval()
return model, tokenizer
# OCR function using the cached model
def extract_text(image_bytes):
try:
# Load the cached model and tokenizer
model, tokenizer = load_model()
# Open the image from bytes in memory and convert to PNG for the model
image = Image.open(io.BytesIO(image_bytes))
image.save("temp_image.png", format="PNG")
# Extract text using the cached model
res = model.chat(tokenizer, "temp_image.png", ocr_type='ocr')
return res
except Exception as e:
handle_error(f"Error during OCR extraction: {str(e)}")
return None
# Function to search for the keyword in the extracted text and highlight it in red
def search_keyword(extracted_text, keyword):
# Using regex for case-insensitive and whole-word matching
keyword = re.escape(keyword) # Escape any special characters in the keyword
regex_pattern = rf'\b({keyword})\b' # Match the whole word
# Count occurrences
occurrences = len(re.findall(regex_pattern, extracted_text, flags=re.IGNORECASE))
# Highlight the keyword in red using HTML
highlighted_text = re.sub(regex_pattern, r"<span style='color:red'><b>\1</b></span>", extracted_text, flags=re.IGNORECASE)
return highlighted_text, occurrences
# Cache the image and OCR results
@st.cache_data
def cache_image_ocr(image_bytes):
return extract_text(image_bytes)
# Main function for setting up the Streamlit app
def app():
st.set_page_config(
page_title="OCR Tool",
layout="wide",
page_icon=":chart_with_upwards_trend:"
)
st.header("Optical Character Recognition for English and Hindi Texts")
st.write("Upload an image below for OCR:")
# Initialize session state to store extracted text
if 'extracted_text' not in st.session_state:
st.session_state.extracted_text = None
# Create a two-column layout
col1, col2 = st.columns([1, 1]) # Equal width columns
with col1:
st.subheader("Upload and OCR Extraction")
# File uploader with exception handling
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"], accept_multiple_files=False)
if uploaded_file is not None:
# Displaying uploaded image
st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
# Convert uploaded file to bytes
image_bytes = uploaded_file.read()
# Use cache to store the OCR results
if st.session_state.extracted_text is None:
with st.spinner("Extracting the text..."):
# Cache the OCR result
extracted_text = cache_image_ocr(image_bytes)
if extracted_text:
st.success("Text extraction completed!", icon="πŸŽ‰")
# Store the extracted text in session state so it doesn't re-run
st.session_state.extracted_text = extracted_text
st.write("Extracted Text:")
st.write(extracted_text)
else:
st.error("Failed to extract text. Please try with a different image.")
else:
# If text is already in session state, just display it
st.write("Extracted Text:")
st.write(st.session_state.extracted_text)
else:
# Clear extracted text when the image is removed
st.session_state.extracted_text = None
st.info("Please upload an image file to proceed.")
# Keyword search functionality (only after text is extracted)
with col2:
st.subheader("Keyword Search")
if st.session_state.extracted_text:
keyword = st.text_input("Enter keyword to search")
if keyword:
with st.spinner(f"Searching for '{keyword}'..."):
highlighted_text, occurrences = search_keyword(st.session_state.extracted_text, keyword)
if occurrences > 0:
st.success(f"Found {occurrences} occurrences of the keyword '{keyword}'!")
# Display the text with red-colored highlights
st.markdown(highlighted_text, unsafe_allow_html=True)
else:
st.warning(f"No occurrences of the keyword '{keyword}' were found.")
else:
st.info("Please upload an image and extract text first.")
# Main function to launch the app
def main():
try:
app()
except Exception as main_error:
handle_error(f"Unexpected error in the main function: {str(main_error)}")
if __name__ == "__main__":
main()