Spaces:
Sleeping
Sleeping
srimanth-d
commited on
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import streamlit as st # Importing required libraries
|
3 |
+
from transformers import AutoModel, AutoTokenizer
|
4 |
+
import io
|
5 |
+
import logging
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Configure logging for error handling
|
9 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
|
10 |
+
|
11 |
+
# Helper function for logging and displaying errors
|
12 |
+
def handle_error(error_message):
|
13 |
+
logging.error(error_message)
|
14 |
+
st.error(f"An error occurred: {error_message}")
|
15 |
+
|
16 |
+
# Cache the model and tokenizer to avoid reloading on every run
|
17 |
+
@st.cache_resource
|
18 |
+
def load_model():
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
20 |
+
model = AutoModel.from_pretrained("srimanth-d/GOT_CPU", trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=151643)
|
21 |
+
model.eval()
|
22 |
+
return model, tokenizer
|
23 |
+
|
24 |
+
# OCR function using the cached model
|
25 |
+
def extract_text(image_bytes):
|
26 |
+
try:
|
27 |
+
# Load the cached model and tokenizer
|
28 |
+
model, tokenizer = load_model()
|
29 |
+
|
30 |
+
# Open the image from bytes in memory and convert to PNG for the model
|
31 |
+
image = Image.open(io.BytesIO(image_bytes))
|
32 |
+
image.save("temp_image.png", format="PNG")
|
33 |
+
|
34 |
+
# Extract text using the cached model
|
35 |
+
res = model.chat(tokenizer, "temp_image.png", ocr_type='ocr')
|
36 |
+
return res
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
handle_error(f"Error during OCR extraction: {str(e)}")
|
40 |
+
return None
|
41 |
+
|
42 |
+
# Function to search for the keyword in the extracted text and highlight it in red
|
43 |
+
def search_keyword(extracted_text, keyword):
|
44 |
+
# Using regex for case-insensitive and whole-word matching
|
45 |
+
keyword = re.escape(keyword) # Escape any special characters in the keyword
|
46 |
+
regex_pattern = rf'\b({keyword})\b' # Match the whole word
|
47 |
+
|
48 |
+
# Count occurrences
|
49 |
+
occurrences = len(re.findall(regex_pattern, extracted_text, flags=re.IGNORECASE))
|
50 |
+
|
51 |
+
# Highlight the keyword in red using HTML
|
52 |
+
highlighted_text = re.sub(regex_pattern, r"<span style='color:red'><b>\1</b></span>", extracted_text, flags=re.IGNORECASE)
|
53 |
+
|
54 |
+
return highlighted_text, occurrences
|
55 |
+
|
56 |
+
# Cache the image and OCR results
|
57 |
+
@st.cache_data
|
58 |
+
def cache_image_ocr(image_bytes):
|
59 |
+
return extract_text(image_bytes)
|
60 |
+
|
61 |
+
# Main function for setting up the Streamlit app
|
62 |
+
def app():
|
63 |
+
st.set_page_config(
|
64 |
+
page_title="OCR Tool",
|
65 |
+
layout="wide",
|
66 |
+
page_icon=":chart_with_upwards_trend:"
|
67 |
+
)
|
68 |
+
|
69 |
+
st.header("Optical Character Recognition for English and Hindi Texts")
|
70 |
+
st.write("Upload an image below for OCR:")
|
71 |
+
|
72 |
+
# Initialize session state to store extracted text
|
73 |
+
if 'extracted_text' not in st.session_state:
|
74 |
+
st.session_state.extracted_text = None
|
75 |
+
|
76 |
+
# Create a two-column layout
|
77 |
+
col1, col2 = st.columns([1, 1]) # Equal width columns
|
78 |
+
|
79 |
+
with col1:
|
80 |
+
st.subheader("Upload and OCR Extraction")
|
81 |
+
# File uploader with exception handling
|
82 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"], accept_multiple_files=False)
|
83 |
+
|
84 |
+
if uploaded_file is not None:
|
85 |
+
# Displaying uploaded image
|
86 |
+
st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
|
87 |
+
|
88 |
+
# Convert uploaded file to bytes
|
89 |
+
image_bytes = uploaded_file.read()
|
90 |
+
|
91 |
+
# Use cache to store the OCR results
|
92 |
+
if st.session_state.extracted_text is None:
|
93 |
+
with st.spinner("Extracting the text..."):
|
94 |
+
# Cache the OCR result
|
95 |
+
extracted_text = cache_image_ocr(image_bytes)
|
96 |
+
|
97 |
+
if extracted_text:
|
98 |
+
st.success("Text extraction completed!", icon="🎉")
|
99 |
+
|
100 |
+
# Store the extracted text in session state so it doesn't re-run
|
101 |
+
st.session_state.extracted_text = extracted_text
|
102 |
+
|
103 |
+
st.write("Extracted Text:")
|
104 |
+
st.write(extracted_text)
|
105 |
+
|
106 |
+
else:
|
107 |
+
st.error("Failed to extract text. Please try with a different image.")
|
108 |
+
|
109 |
+
else:
|
110 |
+
# If text is already in session state, just display it
|
111 |
+
st.write("Extracted Text:")
|
112 |
+
st.write(st.session_state.extracted_text)
|
113 |
+
|
114 |
+
else:
|
115 |
+
# Clear extracted text when the image is removed
|
116 |
+
st.session_state.extracted_text = None
|
117 |
+
st.info("Please upload an image file to proceed.")
|
118 |
+
|
119 |
+
# Keyword search functionality (only after text is extracted)
|
120 |
+
with col2:
|
121 |
+
st.subheader("Keyword Search")
|
122 |
+
|
123 |
+
if st.session_state.extracted_text:
|
124 |
+
keyword = st.text_input("Enter keyword to search")
|
125 |
+
|
126 |
+
if keyword:
|
127 |
+
with st.spinner(f"Searching for '{keyword}'..."):
|
128 |
+
highlighted_text, occurrences = search_keyword(st.session_state.extracted_text, keyword)
|
129 |
+
|
130 |
+
if occurrences > 0:
|
131 |
+
st.success(f"Found {occurrences} occurrences of the keyword '{keyword}'!")
|
132 |
+
# Display the text with red-colored highlights
|
133 |
+
st.markdown(highlighted_text, unsafe_allow_html=True)
|
134 |
+
else:
|
135 |
+
st.warning(f"No occurrences of the keyword '{keyword}' were found.")
|
136 |
+
else:
|
137 |
+
st.info("Please upload an image and extract text first.")
|
138 |
+
|
139 |
+
# Main function to launch the app
|
140 |
+
def main():
|
141 |
+
try:
|
142 |
+
app()
|
143 |
+
except Exception as main_error:
|
144 |
+
handle_error(f"Unexpected error in the main function: {str(main_error)}")
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
main()
|