import re import streamlit as st # Importing required libraries from transformers import AutoModel, AutoTokenizer import io import logging from PIL import Image # Configure logging for error handling logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') # Helper function for logging and displaying errors def handle_error(error_message): logging.error(error_message) st.error(f"An error occurred: {error_message}") # Cache the model and tokenizer to avoid reloading on every run @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) model = AutoModel.from_pretrained("srimanth-d/GOT_CPU", trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=151643) model.eval() return model, tokenizer # OCR function using the cached model def extract_text(image_bytes): try: # Load the cached model and tokenizer model, tokenizer = load_model() # Open the image from bytes in memory and convert to PNG for the model image = Image.open(io.BytesIO(image_bytes)) image.save("temp_image.png", format="PNG") # Extract text using the cached model res = model.chat(tokenizer, "temp_image.png", ocr_type='ocr') return res except Exception as e: handle_error(f"Error during OCR extraction: {str(e)}") return None # Function to search for the keyword in the extracted text and highlight it in red def search_keyword(extracted_text, keyword): # Using regex for case-insensitive and whole-word matching keyword = re.escape(keyword) # Escape any special characters in the keyword regex_pattern = rf'\b({keyword})\b' # Match the whole word # Count occurrences occurrences = len(re.findall(regex_pattern, extracted_text, flags=re.IGNORECASE)) # Highlight the keyword in red using HTML highlighted_text = re.sub(regex_pattern, r"\1", extracted_text, flags=re.IGNORECASE) return highlighted_text, occurrences # Cache the image and OCR results @st.cache_data def cache_image_ocr(image_bytes): return extract_text(image_bytes) # Main function for setting up the Streamlit app def app(): st.set_page_config( page_title="OCR Tool", layout="wide", page_icon=":chart_with_upwards_trend:" ) st.header("Optical Character Recognition for English and Hindi Texts") st.write("Upload an image below for OCR:") # Initialize session state to store extracted text if 'extracted_text' not in st.session_state: st.session_state.extracted_text = None # Create a two-column layout col1, col2 = st.columns([1, 1]) # Equal width columns with col1: st.subheader("Upload and OCR Extraction") # File uploader with exception handling uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"], accept_multiple_files=False) if uploaded_file is not None: # Displaying uploaded image st.image(uploaded_file, caption='Uploaded Image', use_column_width=True) # Convert uploaded file to bytes image_bytes = uploaded_file.read() # Use cache to store the OCR results if st.session_state.extracted_text is None: with st.spinner("Extracting the text..."): # Cache the OCR result extracted_text = cache_image_ocr(image_bytes) if extracted_text: st.success("Text extraction completed!", icon="🎉") # Store the extracted text in session state so it doesn't re-run st.session_state.extracted_text = extracted_text st.write("Extracted Text:") st.write(extracted_text) else: st.error("Failed to extract text. Please try with a different image.") else: # If text is already in session state, just display it st.write("Extracted Text:") st.write(st.session_state.extracted_text) else: # Clear extracted text when the image is removed st.session_state.extracted_text = None st.info("Please upload an image file to proceed.") # Keyword search functionality (only after text is extracted) with col2: st.subheader("Keyword Search") if st.session_state.extracted_text: keyword = st.text_input("Enter keyword to search") if keyword: with st.spinner(f"Searching for '{keyword}'..."): highlighted_text, occurrences = search_keyword(st.session_state.extracted_text, keyword) if occurrences > 0: st.success(f"Found {occurrences} occurrences of the keyword '{keyword}'!") # Display the text with red-colored highlights st.markdown(highlighted_text, unsafe_allow_html=True) else: st.warning(f"No occurrences of the keyword '{keyword}' were found.") else: st.info("Please upload an image and extract text first.") # Main function to launch the app def main(): try: app() except Exception as main_error: handle_error(f"Unexpected error in the main function: {str(main_error)}") if __name__ == "__main__": main()