Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""app | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1XX8pCT291obpzL4fc1vu5L_HTG027lle | |
""" | |
import gradio as gr | |
import torch | |
import datasets | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
dataset = datasets.load_dataset("beans") # This should be the same as the first line of Python code in this Colab notebook | |
extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") | |
model = AutoModelForImageClassification.from_pretrained("saved_model_files") | |
labels = dataset['train'].features['labels'].names | |
def classify(im): | |
features = extractor(im, return_tensors='pt') | |
with torch.no_grad(): | |
logits = model(features["pixel_values"])[-1] | |
probability = torch.nn.functional.softmax(logits, dim=-1) | |
probs = probability[0].detach().numpy() | |
confidences = {label: float(probs[i]) for i, label in enumerate(labels)} | |
return confidences | |
interface = gr.Interface(classify, inputs='image', outputs='label', title='Bean plant disease classifier', description='Detect diseases in beans leaves using their images.', examples=['bean-plant-example.jpeg', 'non-bean-leaf-example.jpeg']) | |
interface.launch(debug=False) |