Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
from PIL import Image | |
from transformers import AutoModel, AutoTokenizer | |
# Load the model and tokenizer from the local path | |
model = AutoModel.from_pretrained('minicpm/models', trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained('minicpm/models', trust_remote_code=True) | |
# Set the model to evaluation mode | |
model.eval() | |
def predict(image, question): | |
# Preprocess the image | |
image = image.convert('RGB') | |
# Create the message list | |
msgs = [{'role': 'user', 'content': question}] | |
# Generate a response | |
res = model.chat( | |
image=image, | |
msgs=msgs, | |
tokenizer=tokenizer, | |
sampling=True, | |
temperature=0.1 | |
) | |
return res | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.inputs.Image(type="pil", label="Upload an Image"), | |
gr.inputs.Textbox(label="Ask a Question") | |
], | |
outputs="text", | |
title="Image Question Answering", | |
description="Upload an image and ask a question about it." | |
) | |
# Launch the app | |
iface.launch() | |