Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" MiniCPM model configuration""" | |
import os | |
from typing import Union | |
from transformers.utils import logging | |
from transformers import LlamaConfig, PretrainedConfig | |
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionConfig | |
logger = logging.get_logger(__name__) | |
class MiniCPMVSliceConfig(PretrainedConfig): | |
model_type = "minicpmv" | |
def __init__( | |
self, | |
patch_size=14, | |
max_slice_nums=9, | |
scale_resolution=448, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.patch_size = patch_size | |
self.max_slice_nums = max_slice_nums | |
self.scale_resolution = scale_resolution | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if config_dict.get("model_type") == "minicpmv": | |
config_dict = config_dict["slice_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class MiniCPMVConfig(LlamaConfig): | |
model_type = "minicpmv" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
default_vision_config = { | |
"hidden_size": 1152, | |
"image_size": 980, | |
"intermediate_size": 4304, | |
"model_type": "idefics2", | |
"num_attention_heads": 16, | |
"num_hidden_layers": 27, | |
"patch_size": 14, | |
} | |
def __init__( | |
self, | |
use_cache=True, | |
query_num=64, | |
image_size=448, | |
drop_vision_last_layer=True, | |
batch_vision_input=True, | |
slice_config=None, | |
vision_config=None, | |
**kwargs, | |
): | |
self.use_cache = use_cache | |
self.query_num = query_num | |
self.image_size = image_size | |
self.drop_vision_last_layer = drop_vision_last_layer | |
self.batch_vision_input = batch_vision_input | |
if slice_config is None: | |
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1) | |
else: | |
self.slice_config = MiniCPMVSliceConfig(**slice_config) | |
self.slice_mode = True | |
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit | |
if vision_config is None: | |
self.vision_config = Idefics2VisionConfig(**self.default_vision_config) | |
logger.info("vision_config is None, using default vision config") | |
elif isinstance(vision_config, dict): | |
self.vision_config = Idefics2VisionConfig(**vision_config) | |
elif isinstance(vision_config, Idefics2VisionConfig): | |
self.vision_config = vision_config | |
self.patch_size = self.vision_config.patch_size | |
super().__init__(**kwargs) |