Spaces:
Build error
Build error
from functools import partial | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn.init import trunc_normal_ | |
def get_2d_sincos_pos_embed(embed_dim, image_size): | |
""" | |
image_size: image_size or (image_height, image_width) | |
return: | |
pos_embed: [image_height, image_width, embed_dim] | |
""" | |
if isinstance(image_size, int): | |
grid_h_size, grid_w_size = image_size, image_size | |
else: | |
grid_h_size, grid_w_size = image_size[0], image_size[1] | |
grid_h = np.arange(grid_h_size, dtype=np.float32) | |
grid_w = np.arange(grid_w_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (H, W) | |
out: (H, W, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float32) | |
omega /= embed_dim / 2. | |
omega = 1. / 10000 ** omega # (D/2,) | |
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product | |
emb_sin = np.sin(out) # (H, W, D/2) | |
emb_cos = np.cos(out) # (H, W, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D) | |
return emb | |
class Resampler(nn.Module): | |
""" | |
A 2D perceiver-resampler network with one cross attention layers by | |
given learnable queries and 2d sincos pos_emb | |
Outputs: | |
A tensor with the shape of (batch_size, num_queries, embed_dim) | |
""" | |
def __init__( | |
self, | |
num_queries, | |
embed_dim, | |
num_heads, | |
kv_dim=None, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
adaptive=False, | |
max_size=(70, 70), | |
): | |
super().__init__() | |
self.num_queries = num_queries | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.adaptive = adaptive | |
self.max_size = max_size | |
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) | |
trunc_normal_(self.query, std=.02) | |
if kv_dim is not None and kv_dim != embed_dim: | |
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False) | |
else: | |
self.kv_proj = nn.Identity() | |
self.attn = nn.MultiheadAttention(embed_dim, num_heads) | |
self.ln_q = norm_layer(embed_dim) | |
self.ln_kv = norm_layer(embed_dim) | |
self.ln_post = norm_layer(embed_dim) | |
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim)) | |
self._set_2d_pos_cache(self.max_size) | |
self.apply(self._init_weights) | |
def _set_2d_pos_cache(self, max_size, device='cpu'): | |
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device) | |
self.register_buffer("pos_embed", pos_embed, persistent=False) | |
def _adjust_pos_cache(self, tgt_sizes, device): | |
max_h = torch.max(tgt_sizes[:, 0]) | |
max_w = torch.max(tgt_sizes[:, 1]) | |
if max_h > self.max_size[0] or max_w > self.max_size[1]: | |
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])] | |
self._set_2d_pos_cache(self.max_size, device) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x, tgt_sizes=None): | |
assert x.shape[0] == tgt_sizes.shape[0] | |
bs = x.shape[0] | |
device = x.device | |
dtype = x.dtype | |
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1] | |
self._adjust_pos_cache(tgt_sizes, device=device) | |
max_patch_len = torch.max(patch_len) | |
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device) | |
pos_embed = [] | |
for i in range(bs): | |
tgt_h, tgt_w = tgt_sizes[i] | |
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D | |
key_padding_mask[i, patch_len[i]:] = True | |
pos_embed = torch.nn.utils.rnn.pad_sequence( | |
pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D | |
x = self.kv_proj(x) # B * L * D | |
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D | |
q = self.ln_q(self.query) # Q * D | |
out = self.attn( | |
self._repeat(q, bs), # Q * B * D | |
x + pos_embed, # L * B * D + L * B * D | |
x, | |
key_padding_mask=key_padding_mask)[0] | |
# out: Q * B * D | |
x = out.permute(1, 0, 2) # B * Q * D | |
x = self.ln_post(x) | |
x = x @ self.proj | |
return x | |
def _repeat(self, query, N: int): | |
return query.unsqueeze(1).repeat(1, N, 1) |