Create_image / app.py
ssboost's picture
Update app.py
2255dc0 verified
raw
history blame
10.2 kB
import spaces
import random
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models import unet_2d_condition
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
import gradio as gr
import numpy as np
from huggingface_hub import InferenceClient
import os
from PIL import Image
import re
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet_t2i,
scheduler=scheduler,
force_zeros_for_empty_prompt=False
).to(device)
pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet_i2i,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
).to(device)
if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt,
ip_adapter_image = None,
ip_adapter_scale = 0.5,
negative_prompt = "",
seed = 0,
randomize_seed = False,
width = 1024,
height = 1024,
guidance_scale = 5.0,
num_inference_steps = 25
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if ip_adapter_image is None:
pipe_t2i.to(device)
image = pipe_t2i(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
image.save("generated_image.jpg") # ํŒŒ์ผ ํ™•์žฅ์ž๋ฅผ .jpg๋กœ ๋ณ€๊ฒฝ
return image, "generated_image.jpg"
else:
pipe_i2i.to(device)
image_encoder.to(device)
pipe_i2i.image_encoder = image_encoder
pipe_i2i.set_ip_adapter_scale([ip_adapter_scale])
image = pipe_i2i(
prompt=prompt,
ip_adapter_image=[ip_adapter_image],
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator
).images[0]
image.save("generated_image.jpg") # ํŒŒ์ผ ํ™•์žฅ์ž๋ฅผ .jpg๋กœ ๋ณ€๊ฒฝ
return image, "generated_image.jpg"
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
# ์ถ”๊ฐ€ ์ฝ”๋“œ ํ†ตํ•ฉ
from transformers import AutoProcessor, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).eval()
processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True)
def modify_caption(caption: str) -> str:
prefix_substrings = [
('captured from ', ''),
('captured at ', '')
]
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings}
def replace_fn(match):
return replacers[match.group(0).lower()]
modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
return modified_caption if modified_caption != caption else caption
@spaces.GPU
def run_example(image):
image = Image.fromarray(image)
task_prompt = "<DESCRIPTION>"
prompt = task_prompt + "Describe this image in great detail."
if image.mode != "RGB":
image = image.convert("RGB")
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
return modify_caption(parsed_answer["<DESCRIPTION>"])
with gr.Blocks(css=css) as Kolors:
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
generated_prompt = gr.Textbox(
label="ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ",
placeholder="์ด๋ฏธ์ง€ ์ƒ์„ฑ์— ์‚ฌ์šฉํ•  ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
lines=2
)
with gr.Row():
ip_adapter_image = gr.Image(label="Image Prompt (optional)", type="pil")
with gr.Row(visible=False): # Advanced Settings ์ˆจ๊น€
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=25,
)
with gr.Row():
ip_adapter_scale = gr.Slider(
label="Image influence scale",
info="Use 1 for creating variations",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
with gr.Row():
run_button = gr.Button("Generate Image")
with gr.Column(elem_id="col-right"):
result = gr.Image(label="Result", show_label=False)
download_button = gr.File(label="Download Image")
# ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฐ ๋‹ค์šด๋กœ๋“œ ํŒŒ์ผ ๊ฒฝ๋กœ ์„ค์ •
run_button.click(
fn=infer,
inputs=[generated_prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, download_button]
)
with gr.Tab("Florence-2 SD3 Prompts"):
gr.Markdown("# [Florence-2 SD3 Long Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner/)")
gr.Markdown("[Florence-2 Base](https://huggingface.co/microsoft/Florence-2-base-ft) fine-tuned on Long SD3 Prompt and Image pairs. Check above link for datasets that are used for fine-tuning.")
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(run_example, [input_img], [output_text])
Kolors.queue().launch(debug=True)