Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ import numpy as np
|
|
13 |
from huggingface_hub import InferenceClient
|
14 |
import os
|
15 |
|
16 |
-
|
17 |
device = "cuda"
|
18 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
19 |
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
|
@@ -56,24 +55,6 @@ pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adap
|
|
56 |
MAX_SEED = np.iinfo(np.int32).max
|
57 |
MAX_IMAGE_SIZE = 1024
|
58 |
|
59 |
-
def call_api(content, system_message, max_tokens=1000, temperature=0.7, top_p=0.95):
|
60 |
-
messages = [{"role": "system", "content": system_message}, {"role": "user", "content": content}]
|
61 |
-
response = client.chat_completion(messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p)
|
62 |
-
return response.choices[0].message['content']
|
63 |
-
|
64 |
-
def generate_prompt(korean_prompt):
|
65 |
-
system_message = """
|
66 |
-
Given the following description in Korean,
|
67 |
-
translate and generate a concise English prompt suitable for a Stable Diffusion model.
|
68 |
-
The prompt should be focused, descriptive,
|
69 |
-
and contain specific keywords or phrases that will help guide the image generation process.
|
70 |
-
Use simple and descriptive language, avoiding unnecessary words.
|
71 |
-
Ensure the output is in English and follows the format typically used in Stable Diffusion prompts.
|
72 |
-
The description is: [Insert Korean description here]
|
73 |
-
"""
|
74 |
-
optimized_prompt = call_api(korean_prompt, system_message)
|
75 |
-
return optimized_prompt # ์ต์ ํ๋ ํ๋กฌํํธ ๋ฐํ
|
76 |
-
|
77 |
@spaces.GPU
|
78 |
def infer(prompt,
|
79 |
ip_adapter_image = None,
|
@@ -136,21 +117,6 @@ css="""
|
|
136 |
with gr.Blocks(css=css) as Kolors:
|
137 |
with gr.Row():
|
138 |
with gr.Column(elem_id="col-left"):
|
139 |
-
with gr.Row():
|
140 |
-
korean_prompt = gr.Textbox(
|
141 |
-
label="ํ๊ตญ์ด ํ๋กฌํํธ ์
๋ ฅ",
|
142 |
-
placeholder="ํ๊ตญ์ด๋ก ์ํ๋ ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์",
|
143 |
-
lines=2
|
144 |
-
)
|
145 |
-
with gr.Row():
|
146 |
-
generate_prompt_button = gr.Button("Generate Prompt")
|
147 |
-
with gr.Row():
|
148 |
-
optimized_prompt = gr.Textbox(
|
149 |
-
label="์ต์ ํ๋ ํ๋กฌํํธ ์์ฑ",
|
150 |
-
placeholder=" ",
|
151 |
-
lines=2,
|
152 |
-
interactive=False
|
153 |
-
)
|
154 |
with gr.Row():
|
155 |
generated_prompt = gr.Textbox(
|
156 |
label="ํ๋กฌํํธ ์
๋ ฅ",
|
@@ -219,13 +185,6 @@ with gr.Blocks(css=css) as Kolors:
|
|
219 |
result = gr.Image(label="Result", show_label=False)
|
220 |
download_button = gr.File(label="Download Image")
|
221 |
|
222 |
-
# ์ต์ ํ๋ ํ๋กฌํํธ ์์ฑ ๋ฐ ๊ฒฐ๊ณผ ํ์
|
223 |
-
generate_prompt_button.click(
|
224 |
-
fn=generate_prompt,
|
225 |
-
inputs=[korean_prompt],
|
226 |
-
outputs=[optimized_prompt]
|
227 |
-
)
|
228 |
-
|
229 |
# ์ด๋ฏธ์ง ์์ฑ ๋ฐ ๋ค์ด๋ก๋ ํ์ผ ๊ฒฝ๋ก ์ค์
|
230 |
run_button.click(
|
231 |
fn=infer,
|
|
|
13 |
from huggingface_hub import InferenceClient
|
14 |
import os
|
15 |
|
|
|
16 |
device = "cuda"
|
17 |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
18 |
ckpt_IPA_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
|
|
|
55 |
MAX_SEED = np.iinfo(np.int32).max
|
56 |
MAX_IMAGE_SIZE = 1024
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
@spaces.GPU
|
59 |
def infer(prompt,
|
60 |
ip_adapter_image = None,
|
|
|
117 |
with gr.Blocks(css=css) as Kolors:
|
118 |
with gr.Row():
|
119 |
with gr.Column(elem_id="col-left"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
with gr.Row():
|
121 |
generated_prompt = gr.Textbox(
|
122 |
label="ํ๋กฌํํธ ์
๋ ฅ",
|
|
|
185 |
result = gr.Image(label="Result", show_label=False)
|
186 |
download_button = gr.File(label="Download Image")
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
# ์ด๋ฏธ์ง ์์ฑ ๋ฐ ๋ค์ด๋ก๋ ํ์ผ ๊ฒฝ๋ก ์ค์
|
189 |
run_button.click(
|
190 |
fn=infer,
|