stablelm-2-chat / app.py
pvduy's picture
Update app.py
94a80cf verified
raw
history blame
3.01 kB
import argparse
import os
import spaces
import gradio as gr
import json
from threading import Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str) # model path
parser.add_argument("--n_gpus", type=int, default=1) # n_gpu
return parser.parse_args()
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_tokens):
global model, tokenizer, device
messages = [{'role': 'system', 'content': system_prompt}]
for human, assistant in history:
messages.append({'role': 'user', 'content': human})
messages.append({'role': 'assistant', 'content': assistant})
messages.append({'role': 'user', 'content': message})
problem = [tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)]
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
streamer = TextIteratorStreamer(tokenizer, timeout=100.0, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids
attention_mask = enc.attention_mask
if input_ids.shape[1] > MAX_LENGTH:
input_ids = input_ids[:, -MAX_LENGTH:]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
generate_kwargs = dict(
{"input_ids": input_ids, "attention_mask": attention_mask},
streamer=streamer,
do_sample=True,
top_p=0.95,
temperature=0.5,
max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
use_cache=True,
eos_token_id=100278 # <|im_end|>
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
if __name__ == "__main__":
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-2-chat", trust_remote_code=True, torch_dtype=torch.bfloat16)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
gr.ChatInterface(
predict,
title="StableLM 2 Chat - Demo",
description="StableLM 2 Chat - StabilityAI",
theme="soft",
chatbot=gr.Chatbot(label="Chat History",),
textbox=gr.Textbox(placeholder="input", container=False, scale=7),
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs=[
gr.Textbox("You are a helpful assistant.", label="System Prompt"),
gr.Slider(0, 1, 0.5, label="Temperature"),
gr.Slider(100, 2048, 1024, label="Max Tokens"),
],
additional_inputs_accordion_name="Parameters",
).queue().launch()