Spaces:
Running
Running
import argparse | |
import os | |
import spaces | |
import gradio as gr | |
import json | |
from threading import Thread | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_LENGTH = 4096 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base_model", type=str) # model path | |
parser.add_argument("--n_gpus", type=int, default=1) # n_gpu | |
return parser.parse_args() | |
def predict(message, history, system_prompt, temperature, max_tokens): | |
global model, tokenizer, device | |
messages = [{'role': 'system', 'content': system_prompt}] | |
for human, assistant in history: | |
messages.append({'role': 'user', 'content': human}) | |
messages.append({'role': 'assistant', 'content': assistant}) | |
messages.append({'role': 'user', 'content': message}) | |
problem = [tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)] | |
stop_tokens = ["<|endoftext|>", "<|im_end|>"] | |
streamer = TextIteratorStreamer(tokenizer, timeout=100.0, skip_prompt=True, skip_special_tokens=True) | |
enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True) | |
input_ids = enc.input_ids | |
attention_mask = enc.attention_mask | |
if input_ids.shape[1] > MAX_LENGTH: | |
input_ids = input_ids[:, -MAX_LENGTH:] | |
input_ids = input_ids.to(device) | |
attention_mask = attention_mask.to(device) | |
generate_kwargs = dict( | |
{"input_ids": input_ids, "attention_mask": attention_mask}, | |
streamer=streamer, | |
do_sample=True, | |
top_p=0.95, | |
temperature=temperature, | |
max_new_tokens=DEFAULT_MAX_NEW_TOKENS, | |
use_cache=True, | |
eos_token_id=100278 # <|im_end|> | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
if __name__ == "__main__": | |
args = parse_args() | |
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-12b-chat") | |
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat') | |
model = AutoModelForCausalLM.from_pretrained( | |
'stabilityai/stablelm-2-12b-chat', | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True | |
) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.to(device) | |
gr.ChatInterface( | |
predict, | |
title="StableLM 2 12B Chat - Demo", | |
description="StableLM 2 12B Chat - StabilityAI", | |
theme="soft", | |
chatbot=gr.Chatbot(label="Chat History",), | |
textbox=gr.Textbox(placeholder="input", container=False, scale=7), | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear", | |
additional_inputs=[ | |
gr.Textbox("You are a helpful assistant.", label="System Prompt"), | |
gr.Slider(0, 1, 0.5, label="Temperature"), | |
gr.Slider(100, 2048, 1024, label="Max Tokens"), | |
], | |
examples=[ | |
["What's been the role of music in human societies?"], | |
["Escribe un poema corto sobre la historia del Mediterráneo."], | |
["Scrivi un Haiku che celebri il gelato."], | |
["Schreibe ein Haiku über die Alpen."], | |
["Ecris une prose a propos de la mer du Nord."], | |
["Escreva um poema sobre a saudade."], | |
["Jane has 8 apples, out of which 2 are red and 3 are green. Assuming there are only red, green and white apples, how many of them are white? Solve this in Python."], | |
], | |
additional_inputs_accordion_name="Parameters", | |
).queue().launch() |