Loren's picture
MMCV version 1.7.0
6350480
raw
history blame
67.2 kB
"""This Streamlit app allows you to compare, from a given image, the results of different solutions:
EasyOcr, PaddleOCR, MMOCR, Tesseract
"""
import streamlit as st
import plotly.express as px
import numpy as np
import math
import pandas as pd
import cv2
from PIL import Image, ImageColor
import PIL
import easyocr
from paddleocr import PaddleOCR
from mmocr.utils.ocr import MMOCR
import pytesseract
from pytesseract import Output
import os
from mycolorpy import colorlist as mcp
###################################################################################################
## FUNCTIONS
###################################################################################################
@st.cache
def convert_df(in_df):
"""Convert data frame function, used by download button
Args:
in_df (data frame): data frame to convert
Returns:
data frame: converted data frame
"""
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return in_df.to_csv().encode('utf-8')
###
def easyocr_coord_convert(in_list_coord):
"""Convert easyocr coordinates to standard format used by others functions
Args:
in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max]
Returns:
list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ]
"""
coord = in_list_coord
return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]]
@st.cache(show_spinner=False)
def initializations():
"""Initializations for the app
Returns:
list of strings : list of OCR solutions names
(['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'])
dict : names and indices of the OCR solutions
({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3})
tuple : color of the detected boxes
list of dicts : list of languages supported by each OCR solution
list of int : columns for recognition details results
dict : confidence color scale
plotly figure : confidence color scale figure
"""
# the readers considered
out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}
# Columns for recognition details results
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract
# Color of the detected boxes
out_color = (0, 76, 153)
# Dicts of laguages supported by each reader
out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \
'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \
'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \
'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \
'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \
'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \
'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \
'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \
'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \
'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \
'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \
'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \
'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \
'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \
'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \
'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \
'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'}
out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \
'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \
'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \
'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \
'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \
'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \
'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \
'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \
'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \
'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \
'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \
'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \
'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \
'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'}
out_dict_lang_mmocr = {'English & Chinese': 'en'}
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \
'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \
'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \
'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \
'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \
'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \
'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \
'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \
'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \
'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \
'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \
'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \
'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \
'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \
'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \
'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \
'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \
'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \
'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \
'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \
'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \
'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \
'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \
'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \
'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \
'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \
'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'}
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, out_dict_lang_mmocr, \
out_dict_lang_tesseract]
# Initialization of detection form
if 'columns_size' not in st.session_state:
st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]]
if 'column_width' not in st.session_state:
st.session_state.column_width = [500] + [400 for x in out_reader_type_list[1:]]
if 'columns_color' not in st.session_state:
st.session_state.columns_color = ["rgb(228,26,28)"] + \
["rgb(0,0,0)" for x in out_reader_type_list[1:]]
# Confidence color scale
out_list_confid = list(np.arange(0,101,1))
out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid))
out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \
for i in range(len(out_list_confid))}
list_y = [1 for i in out_list_confid]
df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y})
out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \
hover_data={'% confidence scale': True, 'y': False},
color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100],
color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square'])
out_fig.update_xaxes(showticklabels=False)
out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False)
out_fig.update_traces(marker_size=50)
out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \
showlegend=False)
return out_reader_type_list, out_reader_type_dict, out_color, out_list_dict_lang, \
out_cols_size, out_dict_back_colors, out_fig
###
@st.experimental_memo(show_spinner=False)
def init_easyocr(in_params):
"""Initialization of easyOCR reader
Args:
in_params (list): list with the language
Returns:
easyocr reader: the easyocr reader instance
"""
out_ocr = easyocr.Reader(in_params)
return out_ocr
###
@st.cache(show_spinner=False)
#@st.experimental_memo(show_spinner=False)
def init_ppocr(in_params):
"""Initialization of PPOCR reader
Args:
in_params (dict): dict with parameters
Returns:
ppocr reader: the ppocr reader instance
"""
out_ocr = PaddleOCR(lang=in_params[0], **in_params[1])
return out_ocr
###
@st.experimental_memo(show_spinner=False)
def init_mmocr(in_params):
"""Initialization of MMOCR reader
Args:
in_params (dict): dict with parameters
Returns:
mmocr reader: the ppocr reader instance
"""
out_ocr = MMOCR(recog=None, **in_params[1])
return out_ocr
###
def init_readers(in_list_params):
"""Initialization of the readers, and return them as list
Args:
in_list_params (list): list of dicts of parameters for each reader
Returns:
list: list of the reader's instances
"""
# Instantiations of the readers :
# - EasyOCR
with st.spinner("EasyOCR reader initialization in progress ..."):
reader_easyocr = init_easyocr([in_list_params[0][0]])
# - PPOCR
# Paddleocr
with st.spinner("PPOCR reader initialization in progress ..."):
reader_ppocr = init_ppocr(in_list_params[1])
# - MMOCR
with st.spinner("MMOCR reader initialization in progress ..."):
reader_mmocr = init_mmocr(in_list_params[2])
out_list_readers = [reader_easyocr, reader_ppocr, reader_mmocr]
return out_list_readers
###
#@st.cache(show_spinner=False)
@st.experimental_memo(show_spinner=False)
def load_image(in_image_file):
"""Load input file and open it
Args:
in_image_file (string or Streamlit UploadedFile): image to consider
Returns:
string : locally saved image path
PIL.Image : input file opened with Pillow
matrix : input file opened with Opencv
"""
if isinstance(in_image_file, str):
out_image_path = "img."+in_image_file.split('.')[-1]
else:
out_image_path = "img."+in_image_file.name.split('.')[-1]
img = Image.open(in_image_file)
img_saved = img.save(out_image_path)
# Read image
out_image_orig = Image.open(out_image_path)
out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB)
return out_image_path, out_image_orig, out_image_cv2
###
#@st.cache(show_spinner=False)
@st.experimental_memo(show_spinner=False)
def easyocr_detect(_in_reader, in_image_path, in_params):
"""Detection with EasyOCR
Args:
_in_reader (EasyOCR reader) : the previously initialized instance
in_image_path (string ) : locally saved image path
in_params (list) : list with the parameters for detection
Returns:
list : list of the boxes coordinates
exception on error, string 'OK' otherwise
"""
try:
dict_param = in_params[1]
detection_result = _in_reader.detect(in_image_path,
#width_ths=0.7,
#mag_ratio=1.5
**dict_param
)
easyocr_coordinates = detection_result[0][0]
# The format of the coordinate is as follows: [x_min, x_max, y_min, y_max]
# Format boxes coordinates for draw
out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates))
out_status = 'OK'
except Exception as e:
out_easyocr_boxes_coordinates = []
out_status = e
return out_easyocr_boxes_coordinates, out_status
###
#@st.cache(show_spinner=False)
@st.experimental_memo(show_spinner=False)
def ppocr_detect(_in_reader, in_image_path):
"""Detection with PPOCR
Args:
_in_reader (PPOCR reader) : the previously initialized instance
in_image_path (string ) : locally saved image path
Returns:
list : list of the boxes coordinates
exception on error, string 'OK' otherwise
"""
# PPOCR detection method
try:
out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False)
out_status = 'OK'
except Exception as e:
out_ppocr_boxes_coordinates = []
out_status = e
return out_ppocr_boxes_coordinates, out_status
###
#@st.cache(show_spinner=False, hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
#@st.cache(show_spinner=False)
@st.experimental_memo(show_spinner=False)
def mmocr_detect(_in_reader, in_image_path):
"""Detection with MMOCR
Args:
_in_reader (EasyORC reader) : the previously initialized instance
in_image_path (string) : locally saved image path
in_params (list) : list with the parameters
Returns:
list : list of the boxes coordinates
exception on error, string 'OK' otherwise
"""
# MMOCR detection method
out_mmocr_boxes_coordinates = []
try:
det_result = _in_reader.readtext(in_image_path, details=True)
bboxes_list = [res['boundary_result'] for res in det_result]
for bboxes in bboxes_list:
for bbox in bboxes:
if len(bbox) > 9:
min_x = min(bbox[0:-1:2])
min_y = min(bbox[1:-1:2])
max_x = max(bbox[0:-1:2])
max_y = max(bbox[1:-1:2])
#box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
else:
min_x = min(bbox[0:-1:2])
min_y = min(bbox[1::2])
max_x = max(bbox[0:-1:2])
max_y = max(bbox[1::2])
box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ]
out_mmocr_boxes_coordinates.append(box4)
out_status = 'OK'
except Exception as e:
out_status = e
return out_mmocr_boxes_coordinates, out_status
###
def cropped_1box(in_box, in_img):
"""Construction of an cropped image corresponding to an area of the initial image
Args:
in_box (list) : box with coordinates
in_img (matrix) : image
Returns:
matrix : cropped image
"""
box_ar = np.array(in_box).astype(np.int64)
x_min = box_ar[:, 0].min()
x_max = box_ar[:, 0].max()
y_min = box_ar[:, 1].min()
y_max = box_ar[:, 1].max()
out_cropped = in_img[y_min:y_max, x_min:x_max]
return out_cropped
###
@st.experimental_memo(show_spinner=False)
def tesserocr_detect(_in_img, in_params):
"""Detection with Tesseract
Args:
_in_img (PIL.Image) : image to consider
in_params (list) : list with the parameters for detection
Returns:
list : list of the boxes coordinates
exception on error, string 'OK' otherwise
"""
try:
dict_param = in_params[1]
df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME)
df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \
[d['left'] + d['width'], d['top']], \
[d['left'] + d['width'], d['top'] + d['height']], \
[d['left'], d['top'] + d['height']], \
], axis=1)
out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list()
out_status = 'OK'
except Exception as e:
out_tesserocr_boxes_coordinates = []
out_status = e
return out_tesserocr_boxes_coordinates, out_status
###
@st.experimental_memo(show_spinner=False)
def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color):
"""Detection process for each OCR solution
Args:
in_image_path (string) : locally saved image path
_in_list_images (list) : list of original image
_in_list_readers (list) : list with previously initialized reader's instances
in_list_params (list) : list with dict parameters for each OCR solution
in_color (tuple) : color for boxes around text
Returns:
list: list of detection results images
list: list of boxes coordinates
"""
## ------- EasyOCR Text detection
with st.spinner('EasyOCR Text detection in progress ...'):
easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \
in_image_path, in_list_params[0])
# Visualization
if easyocr_boxes_coordinates:
easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \
in_color, 'None', 7)
else:
easyocr_boxes_coordinates = easyocr_status
##
## ------- PPOCR Text detection
with st.spinner('PPOCR Text detection in progress ...'):
ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path)
# Visualization
if ppocr_boxes_coordinates:
ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \
in_color, 'None', 7)
else:
ppocr_image_detect = ppocr_status
##
## ------- MMOCR Text detection
with st.spinner('MMOCR Text detection in progress ...'):
mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path)
# Visualization
if mmocr_boxes_coordinates:
mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \
in_color, 'None', 7)
else:
mmocr_image_detect = mmocr_status
##
## ------- Tesseract Text detection
with st.spinner('Tesseract Text detection in progress ...'):
tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(_in_list_images[0], \
in_list_params[3])
# Visualization
if tesserocr_boxes_coordinates:
tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\
in_color, 'None', 7)
else:
tesserocr_image_detect = tesserocr_status
##
#
out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \
mmocr_image_detect, tesserocr_image_detect]
out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \
mmocr_boxes_coordinates, tesserocr_boxes_coordinates]
#
return out_list_images, out_list_coordinates
###
def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4):
"""Draw boxes around detected text
Args:
in_image (PIL.Image) : original image
in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right
[ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ],
[ ... ]
]
in_color (tuple) : color for boxes around text
posit (str, optional) : position for text. Defaults to 'None'.
in_thickness (int, optional): thickness of the box. Defaults to 4.
Returns:
PIL.Image : original image with detected areas
"""
work_img = in_image.copy()
font = cv2.FONT_HERSHEY_SIMPLEX
for ind_box, box in enumerate(in_boxes_coordinates):
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness)
if posit != 'None':
if posit == 'top_left':
pos = tuple(box[0][0])
elif posit == 'top_right':
pos = tuple(box[1][0])
work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \
in_thickness,cv2.LINE_AA)
out_image_drawn = Image.fromarray(work_img)
return out_image_drawn
##
#@st.cache(show_spinner=False)
@st.experimental_memo(show_spinner=False)
def get_cropped(in_boxes_coordinates, in_image_cv):
"""Construct list of cropped images corresponding of the input boxes coordinates list
Args:
in_boxes_coordinates (list) : list of boxes coordinates
in_image_cv (matrix) : original image
Returns:
list : list with cropped images
"""
out_list_images = []
for box in in_boxes_coordinates:
cropped = cropped_1box(box, in_image_cv)
out_list_images.append(cropped)
return out_list_images
###
def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params):
"""Recognition process for each OCR solution
Args:
in_list_readers (list) : list with previously initialized reader's instances
in_image_cv (matrix) : original image
in_boxes_coordinates (list) : list of boxes coordinates
in_list_dict_params (list) : list with dict parameters for each OCR solution
Returns:
data frame : results for each OCR solution, except Tesseract
data frame : results for Tesseract
list : status for each recognition (exception or 'OK')
"""
out_df_results = pd.DataFrame([])
list_text_easyocr = []
list_confidence_easyocr = []
list_text_ppocr = []
list_confidence_ppocr = []
list_text_mmocr = []
list_confidence_mmocr = []
# Create cropped images from detection
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv)
# Recognize with EasyOCR
with st.spinner('EasyOCR Text recognition in progress ...'):
list_text_easyocr, list_confidence_easyocr, status_easyocr = \
easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0])
##
# Recognize with PPOCR
with st.spinner('PPOCR Text recognition in progress ...'):
list_text_ppocr, list_confidence_ppocr, status_ppocr = \
ppocr_recog(list_cropped_images, in_list_dict_params[1])
##
# Recognize with MMOCR
with st.spinner('MMOCR Text recognition in progress ...'):
list_text_mmocr, list_confidence_mmocr, status_mmocr = \
mmocr_recog(list_cropped_images, in_list_dict_params[2])
##
# Recognize with Tesseract
with st.spinner('Tesseract Text recognition in progress ...'):
out_df_results_tesseract, status_tesseract = \
tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images))
##
# Create results data frame
out_df_results = pd.DataFrame({'cropped_image': list_cropped_images,
'text_easyocr': list_text_easyocr,
'confidence_easyocr': list_confidence_easyocr,
'text_ppocr': list_text_ppocr,
'confidence_ppocr': list_confidence_ppocr,
'text_mmocr': list_text_mmocr,
'confidence_mmocr': list_confidence_mmocr
}
)
out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract]
return out_df_results, out_df_results_tesseract, out_list_reco_status
###
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
def easyocr_recog(in_list_images, _in_reader_easyocr, in_params):
"""Recognition with EasyOCR
Args:
in_list_images (list) : list of cropped images
_in_reader_easyocr (EasyOCR reader) : the previously initialized instance
in_params (dict) : parameters for recognition
Returns:
list : list of recognized text
list : list of recognition confidence
string/Exception : recognition status
"""
progress_bar = st.progress(0)
out_list_text_easyocr = []
out_list_confidence_easyocr = []
## ------- EasyOCR Text recognition
try:
step = 0*len(in_list_images) # first recognition process
nb_steps = 4 * len(in_list_images)
for ind_img, cropped in enumerate(in_list_images):
result = _in_reader_easyocr.recognize(cropped, **in_params)
try:
out_list_text_easyocr.append(result[0][1])
out_list_confidence_easyocr.append(np.round(100*result[0][2], 1))
except:
out_list_text_easyocr.append('Not recognize')
out_list_confidence_easyocr.append(100.)
progress_bar.progress((step+ind_img+1)/nb_steps)
out_status = 'OK'
except Exception as e:
out_status = e
progress_bar.empty()
return out_list_text_easyocr, out_list_confidence_easyocr, out_status
##
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
def ppocr_recog(in_list_images, in_params):
"""Recognition with PPOCR
Args:
in_list_images (list) : list of cropped images
in_params (dict) : parameters for recognition
Returns:
list : list of recognized text
list : list of recognition confidence
string/Exception : recognition status
"""
## ------- PPOCR Text recognition
out_list_text_ppocr = []
out_list_confidence_ppocr = []
try:
reader_ppocr = PaddleOCR(**in_params)
step = 1*len(in_list_images) # second recognition process
nb_steps = 4 * len(in_list_images)
progress_bar = st.progress(step/nb_steps)
for ind_img, cropped in enumerate(in_list_images):
result = reader_ppocr.ocr(cropped, det=False, cls=False)
try:
out_list_text_ppocr.append(result[0][0])
out_list_confidence_ppocr.append(np.round(100*result[0][1], 1))
except:
out_list_text_ppocr.append('Not recognize')
out_list_confidence_ppocr.append(100.)
progress_bar.progress((step+ind_img+1)/nb_steps)
out_status = 'OK'
except Exception as e:
out_status = e
progress_bar.empty()
return out_list_text_ppocr, out_list_confidence_ppocr, out_status
##
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
def mmocr_recog(in_list_images, in_params):
"""Recognition with MMOCR
Args:
in_list_images (list) : list of cropped images
in_params (dict) : parameters for recognition
Returns:
list : list of recognized text
list : list of recognition confidence
string/Exception : recognition status
"""
## ------- MMOCR Text recognition
out_list_text_mmocr = []
out_list_confidence_mmocr = []
try:
reader_mmocr = MMOCR(det=None, **in_params)
step = 2*len(in_list_images) # third recognition process
nb_steps = 4 * len(in_list_images)
progress_bar = st.progress(step/nb_steps)
for ind_img, cropped in enumerate(in_list_images):
result = reader_mmocr.readtext(cropped, details=True)
try:
out_list_text_mmocr.append(result[0]['text'])
out_list_confidence_mmocr.append(np.round(100* \
(np.array(result[0]['score']).mean()), 1))
except:
out_list_text_mmocr.append('Not recognize')
out_list_confidence_mmocr.append(100.)
progress_bar.progress((step+ind_img+1)/nb_steps)
out_status = 'OK'
except Exception as e:
out_status = e
progress_bar.empty()
return out_list_text_mmocr, out_list_confidence_mmocr, out_status
##
#@st.cache(show_spinner=False)
@st.experimental_memo(suppress_st_warning=True, show_spinner=False)
def tesserocr_recog(in_img, in_params, in_nb_images):
"""Recognition with Tesseract
Args:
in_image_cv (matrix) : original image
in_params (dict) : parameters for recognition
in_nb_images : nb cropped images (used for progress bar)
Returns:
Pandas data frame : recognition results
string/Exception : recognition status
"""
## ------- Tesseract Text recognition
step = 3*in_nb_images # fourth recognition process
nb_steps = 4 * in_nb_images
progress_bar = st.progress(step/nb_steps)
try:
out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME)
out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \
[d['left'] + d['width'], d['top']], \
[d['left']+d['width'], d['top']+d['height']], \
[d['left'], d['top'] + d['height']], \
], axis=1)
out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img))
out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \
.reset_index(drop=True)
out_status = 'OK'
except Exception as e:
out_df_result = pd.DataFrame([])
out_status = e
progress_bar.progress(1.)
return out_df_result, out_status
###
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \
in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \
in_font_scale=3, in_conf_threshold=65):
"""Draw recognized text on original image, for each OCR solution used
Args:
in_image (matrix) : original image
in_boxes_coordinates (list) : list of boxes coordinates
in_list_texts (list): list of recognized text for each recognizer (except Tesseract)
in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract)
in_df_results_tesseract (Pandas data frame): Tesseract recognition results
in_font_scale (int, optional): text font scale. Defaults to 3.
Returns:
shows the results container
"""
img = in_image.copy()
nb_readers = len(in_reader_type_list)
list_reco_images = [img.copy() for i in range(nb_readers)]
for num, box_ in enumerate(in_boxes_coordinates):
box = np.array(box_).astype(np.int64)
# For each box : draw the results of each recognizer
for ind_r in range(nb_readers-1):
confid = np.round(in_list_confid[ind_r][num], 0)
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
if confid < in_conf_threshold:
text_color = (0, 0, 0)
else:
text_color = (255, 255, 255)
list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \
(box[0][0], box[0][1]), \
(box[2][0], box[2][1]), rgb_color, -1)
list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \
in_list_texts[ind_r][num], \
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2)
# Add Tesseract process
if not in_df_results_tesseract.empty:
ind_tessocr = nb_readers-1
for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()):
box = np.array(box_).astype(np.int64)
confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0)
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB")
if confid < in_conf_threshold:
text_color = (0, 0, 0)
else:
text_color = (255, 255, 255)
list_reco_images[ind_tessocr] = \
cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \
(box[2][0], box[2][1]), rgb_color, -1)
list_reco_images[ind_tessocr] = \
cv2.putText(list_reco_images[ind_tessocr], \
in_df_results_tesseract.iloc[num]['text'], \
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 4)
with show_reco.container():
# Draw the results, 2 images per line
reco_lines = math.ceil(len(in_reader_type_list) / 2)
column_width = 500
for ind_lig in range(0, reco_lines+1, 2):
cols = st.columns(2)
for ind_col in range(2):
ind = ind_lig + ind_col
if ind <= len(in_reader_type_list):
if in_reader_type_list[ind] == 'Tesseract':
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
">Recognition with ' + in_reader_type_list[ind] + \
'<sp style="font-size: 17px"> (with its own detector) \
</sp></p>'
else:
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \
">Recognition with ' + \
in_reader_type_list[ind]+ '</p>'
cols[ind_col].markdown(column_title, unsafe_allow_html=True)
if st.session_state.list_reco_status[ind] == 'OK':
cols[ind_col].image(list_reco_images[ind], \
width=column_width, use_column_width=True)
else:
cols[ind_col].write(list_reco_status[ind], \
use_column_width=True)
##
def highlight():
"""Draw recognized text on original image, for each OCR solution used
Args:
in_image (matrix) : original image
in_boxes_coordinates (list) : list of boxes coordinates
in_list_texts (list): list of recognized text for each recognizer (except Tesseract)
in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract)
in_df_results_tesseract (Pandas data frame): Tesseract recognition results
in_font_scale (int, optional): text font scale. Defaults to 3.
Returns:
shows the results container
"""
show_detect.empty()
with show_detect.container():
columns_size = [1 for x in reader_type_list]
column_width = [400 for x in reader_type_list]
columns_color = ["rgb(0,0,0)" for x in reader_type_list]
columns_size[reader_type_dict[st.session_state.detect_reader]] = 2
column_width[reader_type_dict[st.session_state.detect_reader]] = 500
columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)"
columns = st.columns(columns_size, ) #gap='medium')
for ind_col, col in enumerate(columns):
column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \
';">Detection with ' + reader_type_list[ind_col]+ '</p>'
col.markdown(column_title, unsafe_allow_html=True)
if isinstance(list_images[ind_col+2], PIL.Image.Image):
col.image(list_images[ind_col+2], width=column_width[ind_col], \
use_column_width=True)
else:
col.write(list_images[ind_col+2], use_column_width=True)
st.session_state.columns_size = columns_size
st.session_state.column_width = column_width
st.session_state.columns_color = columns_color
###################################################################################################
## MAIN
###################################################################################################
##----------- Initializations ---------------------------------------------------------------------
#print("PID : ", os.getpid())
st.set_page_config(layout="wide")
st.title("OCR solutions comparator")
st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*")
#st.markdown("#### PID : " + str(os.getpid()))
# Initializations
with st.spinner("Initializations in progress ..."):
reader_type_list, reader_type_dict, color, list_dict_lang, \
cols_size, dict_back_colors, fig_colorscale = initializations()
##----------- Choose language & image -------------------------------------------------------------
st.markdown("#### Choose languages for the text recognition:")
lang_col = st.columns(4)
easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26)
easyocr_lang = list_dict_lang[0][easyocr_key_lang]
ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22)
ppocr_lang = list_dict_lang[1][ppocr_key_lang]
mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0)
mmocr_lang = list_dict_lang[2][mmocr_key_lang]
tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35)
tesserocr_lang = list_dict_lang[3][tesserocr_key_lang]
st.markdown("#### Upload image:")
image_file = st.file_uploader("", type=["png","jpg","jpeg"])
use_demo = st.checkbox('Use a demo file', False)
if use_demo:
image_file = "img_demo.jpg"
##----------- Process input image -----------------------------------------------------------------
if image_file is not None:
image_path, image_orig, image_cv2 = load_image(image_file)
list_images = [image_orig, image_cv2]
##----------- Form with original image & hyperparameters for detectors ----------------------------
with st.form("form1"):
col1, col2 = st.columns(2, ) #gap="medium")
col1.markdown("##### Original image")
col1.image(list_images[0], width=500, use_column_width=True)
col2.markdown("##### Hyperparameters values for detection")
with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \
expanded=False):
t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \
help="min_size (int, default = 10) - Filter text box smaller than \
minimum value in pixel")
t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \
help="text_threshold (float, default = 0.7) - Text confidence threshold")
t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \
help="low_text (float, default = 0.4) - Text low-bound score")
t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \
help="link_threshold (float, default = 0.4) - Link confidence threshold")
t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \
help='''canvas_size (int, default = 2560) \n
Maximum e size. Image bigger than this value will be resized down''')
t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \
help="mag_ratio (float, default = 1) - Image magnification ratio")
t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \
help='''slope_ths (float, default = 0.1) - Maximum slope \
(delta y/delta x) to considered merging. \n
Low valuans tiled boxes will not be merged.''')
t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \
help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n
Boxes wiifferent level should not be merged.''')
t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \
help='''height_ths (float, default = 0.5) - Maximum different in box height. \n
Boxes wiery different text size should not be merged.''')
t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \
help="width_ths (float, default = 0.5) - Maximum horizontal \
distance to merge boxes.")
t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \
help='''add_margin (float, default = 0.1) - \
Extend bounding boxes in all direction by certain value. \n
This is rtant for language with complex script (E.g. Thai).''')
t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \
help="optimal_num_chars (int, default = None) - If specified, bounding boxes \
with estimated number of characters near this value are returned first.")
with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \
expanded=False):
t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \
help='Type of detection algorithm selected. (default = DB)')
t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \
help='''The maximum size of the long side of the image. (default = 960)\n
Limit thximum image height and width.\n
When theg side exceeds this value, the long side will be resized to this size, and the short side \
will be ed proportionally.''')
t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \
help='''Binarization threshold value of DB output map. (default = 0.3) \n
Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''')
t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \
help='''The threshold value of the DB output box. (default = 0.6) \n
DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n
Boxes sclower than this value will be discard.''')
t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \
help='''The expanded ratio of DB output box. (default = 1.6) \n
Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''')
t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \
help="Binarization threshold value of EAST output map. (default = 0.8)")
t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \
help='''The threshold value of the EAST output box. (default = 0.1) \n
Boxes sclower than this value will be discarded.''')
t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \
help="The NMS threshold value of EAST model output box. (default = 0.2)")
t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \
help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \
to calculate. (default = fast) \n
Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''')
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \
expanded=False):
t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \
'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \
'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\
'PS_IC15','Tesseract','TextSnake'], 10, \
help='Text detection algorithm. (default = PANet_IC15)')
st.write("###### *More about text detection models* 👉 \
[here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)")
t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \
help='The maximum x-axis distance to merge boxes. (defaut=20)')
with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \
expanded=False):
t3_psm = st.selectbox('Page segmentation mode (psm)', \
[' - Default', \
' 4 Assume a single column of text of variable sizes', \
' 5 Assume a single uniform block of vertically aligned text', \
' 6 Assume a single uniform block of text', \
' 7 Treat the image as a single text line', \
' 8 Treat the image as a single word', \
' 9 Treat the image as a single word in a circle', \
'10 Treat the image as a single character', \
'11 Sparse text. Find as much text as possible in no \
particular order', \
'13 Raw line. Treat the image as a single text line, \
bypassing hacks that are Tesseract-specific'])
t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
'1 Neural nets LSTM engine only', \
'2 Legacy + LSTM engines', \
'3 Default, based on what is available'], 3)
t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \
placeholder='Limit tesseract to recognize only this characters', \
help='Example for numbers only : 0123456789')
submit_detect = st.form_submit_button("Launch detection")
##----------- Process text detection --------------------------------------------------------------
if submit_detect:
# Process text detection
if t0_optimal_num_chars == 0:
t0_optimal_num_chars = None
# Construct the config Tesseract parameter
t3_config = ''
psm = t3_psm[:2]
if psm != ' -':
t3_config += '--psm ' + psm.strip()
oem = t3_oem[:1]
if oem != '3':
t3_config += ' --oem ' + oem
if t3_whitelist != '':
t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist
list_params_det = \
[[easyocr_lang, \
{'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \
'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \
'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \
'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \
'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \
'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \
}], \
[ppocr_lang, \
{'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \
'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \
'det_db_unclip_ratio': t1_det_db_unclip_ratio, \
'det_east_score_thresh': t1_det_east_score_thresh, \
'det_east_cover_thresh': t1_det_east_cover_thresh, \
'det_east_nms_thresh': t1_det_east_nms_thresh, \
'det_db_score_mode': t1_det_db_score_mode}],
[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}],
[tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}]
]
show_info1 = st.empty()
show_info1.info("Readers initializations in progress (it may take a while) ...")
list_readers = init_readers(list_params_det)
show_info1.info("Text detection in progress ...")
list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \
list_params_det, color)
show_info1.empty()
if 'list_readers' not in st.session_state:
st.session_state.list_readers = list_readers
if 'list_coordinates' not in st.session_state:
st.session_state.list_coordinates = list_coordinates
if 'list_images' not in st.session_state:
st.session_state.list_images = list_images
if 'list_params_det' not in st.session_state:
st.session_state.list_params_det = list_params_det
if 'columns_size' not in st.session_state:
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]]
if 'column_width' not in st.session_state:
st.session_state.column_width = [500] + [400 for x in reader_type_list[1:]]
if 'columns_color' not in st.session_state:
st.session_state.columns_color = ["rgb(228,26,28)"] + \
["rgb(0,0,0)" for x in reader_type_list[1:]]
if 'list_coordinates' in st.session_state:
list_coordinates = st.session_state.list_coordinates
list_images = st.session_state.list_images
list_readers = st.session_state.list_readers
list_params_det = st.session_state.list_params_det
##----------- Text detection results --------------------------------------------------------------
st.subheader("Text detection")
show_detect = st.empty()
list_ok_detect = []
with show_detect.container():
columns = st.columns(st.session_state.columns_size, ) #gap='medium')
for no_col, col in enumerate(columns):
column_title = '<p style="font-size: 20px;color:' + \
st.session_state.columns_color[no_col] + \
';">Detection with ' + reader_type_list[no_col]+ '</p>'
col.markdown(column_title, unsafe_allow_html=True)
if isinstance(list_images[no_col+2], PIL.Image.Image):
col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \
use_column_width=True)
list_ok_detect.append(reader_type_list[no_col])
else:
col.write(list_images[no_col+2], use_column_width=True)
st.subheader("Text recognition")
st.markdown("##### Using detection performed above by:")
st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \
horizontal=True, on_change=highlight)
##----------- Form with hyperparameters for recognition -----------------------
with st.form("form2"):
st.markdown("##### Hyperparameters values for recognition")
with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \
expanded=False):
t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \
help="decoder (string, default = 'greedy') - options are 'greedy', \
'beamsearch' and 'wordbeamsearch.")
t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \
help="beamWidth (int, default = 5) - How many beam to keep when decoder = \
'beamsearch' or 'wordbeamsearch'.")
t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \
help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \
but use more memory.")
t0_workers = st.slider('workers', 0, 10, 0, step=1, \
help="workers (int, default = 0) - Number thread used in of dataloader.")
t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \
placeholder='Force EasyOCR to recognize only this subset of characters', \
help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n
Usefor specific problem (E.g. license plate, etc.)''')
t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \
placeholder='Block subset of character (will be ignored if allowlist is given)', \
help='''blocklist (string) - Block subset of character. This argument will be \
ignored if allowlist is given.''')
t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \
help="detail (int, default = 1) - Set this to 0 for simple output")
t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \
help='paragraph (bool, default = False) - Combine result into paragraph')
t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \
help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \
this value will be passed into model 2 times.\n
Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n
The with more confident level will be returned as a result.''')
t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \
help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \
contrast text box')
with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \
expanded=False):
t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \
help="Type of recognition algorithm selected. (default=CRNN)")
t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \
help="When performing recognition, the batchsize of forward images. \
(default=30)")
t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \
help="The maximum text length that the recognition algorithm can recognize. \
(default=25)")
t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \
help="Whether to recognize spaces. (default=TRUE)")
t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \
help="Filter the output by score (from the recognition model), and those \
below this score will not be returned. (default=0.5)")
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \
expanded=False):
t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \
'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \
'SATRN','SATRN_sm','SEG','Tesseract'], 7, \
help='Text recognition algorithm. (default = SAR)')
st.write("###### *More about text recognition models* 👉 \
[here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)")
with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \
expanded=False):
t3r_psm = st.selectbox('Page segmentation mode (psm)', \
[' - Default', \
' 4 Assume a single column of text of variable sizes', \
' 5 Assume a single uniform block of vertically aligned \
text', \
' 6 Assume a single uniform block of text', \
' 7 Treat the image as a single text line', \
' 8 Treat the image as a single word', \
' 9 Treat the image as a single word in a circle', \
'10 Treat the image as a single character', \
'11 Sparse text. Find as much text as possible in no \
particular order', \
'13 Raw line. Treat the image as a single text line, \
bypassing hacks that are Tesseract-specific'])
t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \
'1 Neural nets LSTM engine only', \
'2 Legacy + LSTM engines', \
'3 Default, based on what is available'], 3)
t3r_whitelist = st.text_input('Limit tesseract to recognize only this \
characters :', \
placeholder='Limit tesseract to recognize only this characters', \
help='Example for numbers only : 0123456789')
submit_reco = st.form_submit_button("Launch recognition")
if submit_reco:
process_detect.clear()
##----------- Process recognition ------------------------------------------
reader_ind = reader_type_dict[st.session_state.detect_reader]
list_boxes = list_coordinates[reader_ind]
# Construct the config Tesseract parameter
t3r_config = ''
psm = t3r_psm[:2]
if psm != ' -':
t3r_config += '--psm ' + psm.strip()
oem = t3r_oem[:1]
if oem != '3':
t3r_config += ' --oem ' + oem
if t3r_whitelist != '':
t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist
list_params_rec = \
[{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \
'batch_size': t0_batch_size, 'workers': t0_workers, \
'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \
'detail': t0_detail, 'paragraph': t0_paragraph, \
'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast
},
{ **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \
'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \
'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \
**{'lang': list_params_det[1][0]}
},
{'recog': t2_recog},
{'lang': tesserocr_lang, 'config': t3r_config}
]
show_info2 = st.empty()
with show_info2.container():
st.info("Text recognition in progress ...")
df_results, df_results_tesseract, list_reco_status = \
process_recog(list_readers, list_images[1], list_boxes, list_params_rec)
show_info2.empty()
st.session_state.df_results = df_results
st.session_state.list_boxes = list_boxes
st.session_state.df_results_tesseract = df_results_tesseract
st.session_state.list_reco_status = list_reco_status
if 'df_results' in st.session_state:
##----------- Show recognition results ------------------------------------------------------------
results_cols = st.session_state.df_results.columns
list_col_text = np.arange(1, len(cols_size), 2)
list_col_confid = np.arange(2, len(cols_size), 2)
dict_draw_reco = {'in_image': st.session_state.list_images[1], \
'in_boxes_coordinates': st.session_state.list_boxes, \
'in_list_texts': [st.session_state.df_results[x].to_list() \
for x in results_cols[list_col_text]], \
'in_list_confid': [st.session_state.df_results[x].to_list() \
for x in results_cols[list_col_confid]], \
'in_dict_back_colors': dict_back_colors, \
'in_df_results_tesseract' : st.session_state.df_results_tesseract, \
'in_reader_type_list': reader_type_list
}
show_reco = st.empty()
with st.form("form3"):
st.plotly_chart(fig_colorscale, use_container_width=True)
col_font, col_threshold = st.columns(2)
col_font.slider('Font scale', 1, 7, 4, step=1, key="font_scale_sld")
col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \
step=1, key="conf_threshold_sld")
col_threshold.write("(text color is black below this % confidence threshold, \
and white above)")
draw_reco_images(**dict_draw_reco)
submit_resize = st.form_submit_button("Refresh")
if submit_resize:
draw_reco_images(**dict_draw_reco, \
in_font_scale=st.session_state.font_scale_sld, \
in_conf_threshold=st.session_state.conf_threshold_sld)
st.subheader("Recognition details")
with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=False):
cols = st.columns(cols_size)
cols[0].markdown('#### Detected area')
for i in range(1, (len(reader_type_list)-1)*2, 2):
cols[i].markdown('#### with ' + reader_type_list[i//2])
for row in st.session_state.df_results.itertuples():
#cols = st.columns(1 + len(reader_type_list)*2)
cols = st.columns(cols_size)
cols[0].image(row.cropped_image, width=150)
for ind_col in range(1, len(cols), 2):
cols[ind_col].write(getattr(row, results_cols[ind_col]))
cols[ind_col+1].write("("+str( \
getattr(row, results_cols[ind_col+1]))+"%)")
st.download_button(
label="Download results as CSV file",
data=convert_df(st.session_state.df_results),
file_name='OCR_comparator_results.csv',
mime='text/csv',
)
if not st.session_state.df_results_tesseract.empty:
with st.expander("Detailed areas for Tesseract", expanded=False):
cols = st.columns([2,2,1])
cols[0].markdown('#### Detected area')
cols[1].markdown('#### with Tesseract')
for row in st.session_state.df_results_tesseract.itertuples():
cols = st.columns([2,2,1])
cols[0].image(row.cropped, width=150)
cols[1].write(getattr(row, 'text'))
cols[2].write("("+str(getattr(row, 'conf'))+"%)")
st.download_button(
label="Download Tesseract results as CSV file",
data=convert_df(st.session_state.df_results),
file_name='OCR_comparator_Tesseract_results.csv',
mime='text/csv',
)