Spaces:
Sleeping
Sleeping
"""This Streamlit app allows you to compare, from a given image, the results of different solutions: | |
EasyOcr, PaddleOCR, MMOCR, Tesseract | |
""" | |
import streamlit as st | |
import plotly.express as px | |
import numpy as np | |
import math | |
import pandas as pd | |
from time import sleep | |
import cv2 | |
from PIL import Image, ImageColor | |
import PIL | |
import easyocr | |
from paddleocr import PaddleOCR | |
from mmocr.utils.ocr import MMOCR | |
import pytesseract | |
from pytesseract import Output | |
import os | |
from mycolorpy import colorlist as mcp | |
################################################################################################### | |
## MAIN | |
################################################################################################### | |
def app(): | |
################################################################################################### | |
## FUNCTIONS | |
################################################################################################### | |
def convert_df(in_df): | |
"""Convert data frame function, used by download button | |
Args: | |
in_df (data frame): data frame to convert | |
Returns: | |
data frame: converted data frame | |
""" | |
# IMPORTANT: Cache the conversion to prevent computation on every rerun | |
return in_df.to_csv().encode('utf-8') | |
### | |
def easyocr_coord_convert(in_list_coord): | |
"""Convert easyocr coordinates to standard format used by others functions | |
Args: | |
in_list_coord (list of numbers): format [x_min, x_max, y_min, y_max] | |
Returns: | |
list of lists: format [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ] | |
""" | |
coord = in_list_coord | |
return [[coord[0], coord[2]], [coord[1], coord[2]], [coord[1], coord[3]], [coord[0], coord[3]]] | |
### | |
def initializations(): | |
"""Initializations for the app | |
Returns: | |
list of strings : list of OCR solutions names | |
(['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract']) | |
dict : names and indices of the OCR solutions | |
({'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3}) | |
list of dicts : list of languages supported by each OCR solution | |
list of int : columns for recognition details results | |
dict : confidence color scale | |
plotly figure : confidence color scale figure | |
""" | |
# the readers considered | |
out_reader_type_list = ['EasyOCR', 'PPOCR', 'MMOCR', 'Tesseract'] | |
out_reader_type_dict = {'EasyOCR': 0, 'PPOCR': 1, 'MMOCR': 2, 'Tesseract': 3} | |
# Columns for recognition details results | |
out_cols_size = [2] + [2,1]*(len(out_reader_type_list)-1) # Except Tesseract | |
# Dicts of laguages supported by each reader | |
out_dict_lang_easyocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Angika': 'ang', \ | |
'Arabic': 'ar', 'Assamese': 'as', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ | |
'Bulgarian': 'bg', 'Bihari': 'bh', 'Bhojpuri': 'bho', 'Bengali': 'bn', 'Bosnian': 'bs', \ | |
'Simplified Chinese': 'ch_sim', 'Traditional Chinese': 'ch_tra', 'Chechen': 'che', \ | |
'Czech': 'cs', 'Welsh': 'cy', 'Danish': 'da', 'Dargwa': 'dar', 'German': 'de', \ | |
'English': 'en', 'Spanish': 'es', 'Estonian': 'et', 'Persian (Farsi)': 'fa', 'French': 'fr', \ | |
'Irish': 'ga', 'Goan Konkani': 'gom', 'Hindi': 'hi', 'Croatian': 'hr', 'Hungarian': 'hu', \ | |
'Indonesian': 'id', 'Ingush': 'inh', 'Icelandic': 'is', 'Italian': 'it', 'Japanese': 'ja', \ | |
'Kabardian': 'kbd', 'Kannada': 'kn', 'Korean': 'ko', 'Kurdish': 'ku', 'Latin': 'la', \ | |
'Lak': 'lbe', 'Lezghian': 'lez', 'Lithuanian': 'lt', 'Latvian': 'lv', 'Magahi': 'mah', \ | |
'Maithili': 'mai', 'Maori': 'mi', 'Mongolian': 'mn', 'Marathi': 'mr', 'Malay': 'ms', \ | |
'Maltese': 'mt', 'Nepali': 'ne', 'Newari': 'new', 'Dutch': 'nl', 'Norwegian': 'no', \ | |
'Occitan': 'oc', 'Pali': 'pi', 'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', \ | |
'Russian': 'ru', 'Serbian (cyrillic)': 'rs_cyrillic', 'Serbian (latin)': 'rs_latin', \ | |
'Nagpuri': 'sck', 'Slovak': 'sk', 'Slovenian': 'sl', 'Albanian': 'sq', 'Swedish': 'sv', \ | |
'Swahili': 'sw', 'Tamil': 'ta', 'Tabassaran': 'tab', 'Telugu': 'te', 'Thai': 'th', \ | |
'Tajik': 'tjk', 'Tagalog': 'tl', 'Turkish': 'tr', 'Uyghur': 'ug', 'Ukranian': 'uk', \ | |
'Urdu': 'ur', 'Uzbek': 'uz', 'Vietnamese': 'vi'} | |
out_dict_lang_ppocr = {'Abaza': 'abq', 'Adyghe': 'ady', 'Afrikaans': 'af', 'Albanian': 'sq', \ | |
'Angika': 'ang', 'Arabic': 'ar', 'Avar': 'ava', 'Azerbaijani': 'az', 'Belarusian': 'be', \ | |
'Bhojpuri': 'bho','Bihari': 'bh','Bosnian': 'bs','Bulgarian': 'bg','Chinese & English': 'ch', \ | |
'Chinese Traditional': 'chinese_cht', 'Croatian': 'hr', 'Czech': 'cs', 'Danish': 'da', \ | |
'Dargwa': 'dar', 'Dutch': 'nl', 'English': 'en', 'Estonian': 'et', 'French': 'fr', \ | |
'German': 'german','Goan Konkani': 'gom','Hindi': 'hi','Hungarian': 'hu','Icelandic': 'is', \ | |
'Indonesian': 'id', 'Ingush': 'inh', 'Irish': 'ga', 'Italian': 'it', 'Japan': 'japan', \ | |
'Kabardian': 'kbd', 'Korean': 'korean', 'Kurdish': 'ku', 'Lak': 'lbe', 'Latvian': 'lv', \ | |
'Lezghian': 'lez', 'Lithuanian': 'lt', 'Magahi': 'mah', 'Maithili': 'mai', 'Malay': 'ms', \ | |
'Maltese': 'mt', 'Maori': 'mi', 'Marathi': 'mr', 'Mongolian': 'mn', 'Nagpur': 'sck', \ | |
'Nepali': 'ne', 'Newari': 'new', 'Norwegian': 'no', 'Occitan': 'oc', 'Persian': 'fa', \ | |
'Polish': 'pl', 'Portuguese': 'pt', 'Romanian': 'ro', 'Russia': 'ru', 'Saudi Arabia': 'sa', \ | |
'Serbian(cyrillic)': 'rs_cyrillic', 'Serbian(latin)': 'rs_latin', 'Slovak': 'sk', \ | |
'Slovenian': 'sl', 'Spanish': 'es', 'Swahili': 'sw', 'Swedish': 'sv', 'Tabassaran': 'tab', \ | |
'Tagalog': 'tl', 'Tamil': 'ta', 'Telugu': 'te', 'Turkish': 'tr', 'Ukranian': 'uk', \ | |
'Urdu': 'ur', 'Uyghur': 'ug', 'Uzbek': 'uz', 'Vietnamese': 'vi', 'Welsh': 'cy'} | |
out_dict_lang_mmocr = {'English & Chinese': 'en'} | |
out_dict_lang_tesseract = {'Afrikaans': 'afr','Albanian': 'sqi','Amharic': 'amh', \ | |
'Arabic': 'ara', 'Armenian': 'hye','Assamese': 'asm','Azerbaijani - Cyrilic': 'aze_cyrl', \ | |
'Azerbaijani': 'aze', 'Basque': 'eus','Belarusian': 'bel','Bengali': 'ben','Bosnian': 'bos', \ | |
'Breton': 'bre', 'Bulgarian': 'bul','Burmese': 'mya','Catalan; Valencian': 'cat', \ | |
'Cebuano': 'ceb', 'Central Khmer': 'khm','Cherokee': 'chr','Chinese - Simplified': 'chi_sim', \ | |
'Chinese - Traditional': 'chi_tra','Corsican': 'cos','Croatian': 'hrv','Czech': 'ces', \ | |
'Danish':'dan','Dutch; Flemish':'nld','Dzongkha':'dzo','English, Middle (1100-1500)':'enm', \ | |
'English': 'eng','Esperanto': 'epo','Estonian': 'est','Faroese': 'fao', \ | |
'Filipino (old - Tagalog)': 'fil','Finnish': 'fin','French, Middle (ca.1400-1600)': 'frm', \ | |
'French': 'fra','Galician': 'glg','Georgian - Old': 'kat_old','Georgian': 'kat', \ | |
'German - Fraktur': 'frk','German': 'deu','Greek, Modern (1453-)': 'ell','Gujarati': 'guj', \ | |
'Haitian; Haitian Creole': 'hat','Hebrew': 'heb','Hindi': 'hin','Hungarian': 'hun', \ | |
'Icelandic': 'isl','Indonesian': 'ind','Inuktitut': 'iku','Irish': 'gle', \ | |
'Italian - Old': 'ita_old','Italian': 'ita','Japanese': 'jpn','Javanese': 'jav', \ | |
'Kannada': 'kan','Kazakh': 'kaz','Kirghiz; Kyrgyz': 'kir','Korean (vertical)': 'kor_vert', \ | |
'Korean': 'kor','Kurdish (Arabic Script)': 'kur_ara','Lao': 'lao','Latin': 'lat', \ | |
'Latvian':'lav','Lithuanian':'lit','Luxembourgish':'ltz','Macedonian':'mkd','Malay':'msa', \ | |
'Malayalam': 'mal','Maltese': 'mlt','Maori': 'mri','Marathi': 'mar','Mongolian': 'mon', \ | |
'Nepali': 'nep','Norwegian': 'nor','Occitan (post 1500)': 'oci', \ | |
'Orientation and script detection module':'osd','Oriya':'ori','Panjabi; Punjabi':'pan', \ | |
'Persian':'fas','Polish':'pol','Portuguese':'por','Pushto; Pashto':'pus','Quechua':'que', \ | |
'Romanian; Moldavian; Moldovan': 'ron','Russian': 'rus','Sanskrit': 'san', \ | |
'Scottish Gaelic': 'gla','Serbian - Latin': 'srp_latn','Serbian': 'srp','Sindhi': 'snd', \ | |
'Sinhala; Sinhalese': 'sin','Slovak': 'slk','Slovenian': 'slv', \ | |
'Spanish; Castilian - Old': 'spa_old','Spanish; Castilian': 'spa','Sundanese': 'sun', \ | |
'Swahili': 'swa','Swedish': 'swe','Syriac': 'syr','Tajik': 'tgk','Tamil': 'tam', \ | |
'Tatar':'tat','Telugu':'tel','Thai':'tha','Tibetan':'bod','Tigrinya':'tir','Tonga':'ton', \ | |
'Turkish': 'tur','Uighur; Uyghur': 'uig','Ukrainian': 'ukr','Urdu': 'urd', \ | |
'Uzbek - Cyrilic': 'uzb_cyrl','Uzbek': 'uzb','Vietnamese': 'vie','Welsh': 'cym', \ | |
'Western Frisian': 'fry','Yiddish': 'yid','Yoruba': 'yor'} | |
out_list_dict_lang = [out_dict_lang_easyocr, out_dict_lang_ppocr, out_dict_lang_mmocr, \ | |
out_dict_lang_tesseract] | |
# Initialization of detection form | |
if 'columns_size' not in st.session_state: | |
st.session_state.columns_size = [2] + [1 for x in out_reader_type_list[1:]] | |
if 'column_width' not in st.session_state: | |
st.session_state.column_width = [400] + [300 for x in out_reader_type_list[1:]] | |
if 'columns_color' not in st.session_state: | |
st.session_state.columns_color = ["rgb(228,26,28)"] + \ | |
["rgb(0,0,0)" for x in out_reader_type_list[1:]] | |
if 'list_coordinates' not in st.session_state: | |
st.session_state.list_coordinates = [] | |
# Confidence color scale | |
out_list_confid = list(np.arange(0,101,1)) | |
out_list_grad = mcp.gen_color_normalized(cmap="Greens",data_arr=np.array(out_list_confid)) | |
out_dict_back_colors = {out_list_confid[i]: out_list_grad[i] \ | |
for i in range(len(out_list_confid))} | |
list_y = [1 for i in out_list_confid] | |
df_confid = pd.DataFrame({'% confidence scale': out_list_confid, 'y': list_y}) | |
out_fig = px.scatter(df_confid, x='% confidence scale', y='y', \ | |
hover_data={'% confidence scale': True, 'y': False}, | |
color=out_dict_back_colors.values(), range_y=[0.9,1.1], range_x=[0,100], | |
color_discrete_map="identity",height=50,symbol='y',symbol_sequence=['square']) | |
out_fig.update_xaxes(showticklabels=False) | |
out_fig.update_yaxes(showticklabels=False, range=[0.1, 1.1], visible=False) | |
out_fig.update_traces(marker_size=50) | |
out_fig.update_layout(paper_bgcolor="white", margin=dict(b=0,r=0,t=0,l=0), xaxis_side="top", \ | |
showlegend=False) | |
return out_reader_type_list, out_reader_type_dict, out_list_dict_lang, \ | |
out_cols_size, out_dict_back_colors, out_fig | |
### | |
def init_easyocr(in_params): | |
"""Initialization of easyOCR reader | |
Args: | |
in_params (list): list with the language | |
Returns: | |
easyocr reader: the easyocr reader instance | |
""" | |
out_ocr = easyocr.Reader(in_params) | |
return out_ocr | |
### | |
def init_ppocr(in_params): | |
"""Initialization of PPOCR reader | |
Args: | |
in_params (dict): dict with parameters | |
Returns: | |
ppocr reader: the ppocr reader instance | |
""" | |
out_ocr = PaddleOCR(lang=in_params[0], **in_params[1]) | |
return out_ocr | |
### | |
def init_mmocr(in_params): | |
"""Initialization of MMOCR reader | |
Args: | |
in_params (dict): dict with parameters | |
Returns: | |
mmocr reader: the ppocr reader instance | |
""" | |
out_ocr = MMOCR(recog=None, **in_params[1]) | |
return out_ocr | |
### | |
def init_readers(in_list_params): | |
"""Initialization of the readers, and return them as list | |
Args: | |
in_list_params (list): list of dicts of parameters for each reader | |
Returns: | |
list: list of the reader's instances | |
""" | |
# Instantiations of the readers : | |
# - EasyOCR | |
with st.spinner("EasyOCR reader initialization in progress ..."): | |
reader_easyocr = init_easyocr([in_list_params[0][0]]) | |
# - PPOCR | |
# Paddleocr | |
with st.spinner("PPOCR reader initialization in progress ..."): | |
reader_ppocr = init_ppocr(in_list_params[1]) | |
# - MMOCR | |
with st.spinner("MMOCR reader initialization in progress ..."): | |
reader_mmocr = init_mmocr(in_list_params[2]) | |
out_list_readers = [reader_easyocr, reader_ppocr, reader_mmocr] | |
return out_list_readers | |
### | |
def load_image(in_image_file): | |
"""Load input file and open it | |
Args: | |
in_image_file (string or Streamlit UploadedFile): image to consider | |
Returns: | |
string : locally saved image path (img.) | |
PIL.Image : input file opened with Pillow | |
matrix : input file opened with Opencv | |
""" | |
#if isinstance(in_image_file, str): | |
# out_image_path = "img."+in_image_file.split('.')[-1] | |
#else: | |
# out_image_path = "img."+in_image_file.name.split('.')[-1] | |
if isinstance(in_image_file, str): | |
out_image_path = "tmp_"+in_image_file | |
else: | |
out_image_path = "tmp_"+in_image_file.name | |
img = Image.open(in_image_file) | |
img_saved = img.save(out_image_path) | |
# Read image | |
out_image_orig = Image.open(out_image_path) | |
out_image_cv2 = cv2.cvtColor(cv2.imread(out_image_path), cv2.COLOR_BGR2RGB) | |
return out_image_path, out_image_orig, out_image_cv2 | |
### | |
def easyocr_detect(_in_reader, in_image_path, in_params): | |
"""Detection with EasyOCR | |
Args: | |
_in_reader (EasyOCR reader) : the previously initialized instance | |
in_image_path (string ) : locally saved image path | |
in_params (list) : list with the parameters for detection | |
Returns: | |
list : list of the boxes coordinates | |
exception on error, string 'OK' otherwise | |
""" | |
try: | |
dict_param = in_params[1] | |
detection_result = _in_reader.detect(in_image_path, | |
#width_ths=0.7, | |
#mag_ratio=1.5 | |
**dict_param | |
) | |
easyocr_coordinates = detection_result[0][0] | |
# The format of the coordinate is as follows: [x_min, x_max, y_min, y_max] | |
# Format boxes coordinates for draw | |
out_easyocr_boxes_coordinates = list(map(easyocr_coord_convert, easyocr_coordinates)) | |
out_status = 'OK' | |
except Exception as e: | |
out_easyocr_boxes_coordinates = [] | |
out_status = e | |
return out_easyocr_boxes_coordinates, out_status | |
### | |
def ppocr_detect(_in_reader, in_image_path): | |
"""Detection with PPOCR | |
Args: | |
_in_reader (PPOCR reader) : the previously initialized instance | |
in_image_path (string ) : locally saved image path | |
Returns: | |
list : list of the boxes coordinates | |
exception on error, string 'OK' otherwise | |
""" | |
# PPOCR detection method | |
try: | |
out_ppocr_boxes_coordinates = _in_reader.ocr(in_image_path, rec=False) | |
out_status = 'OK' | |
except Exception as e: | |
out_ppocr_boxes_coordinates = [] | |
out_status = e | |
return out_ppocr_boxes_coordinates, out_status | |
### | |
def mmocr_detect(_in_reader, in_image_path): | |
"""Detection with MMOCR | |
Args: | |
_in_reader (EasyORC reader) : the previously initialized instance | |
in_image_path (string) : locally saved image path | |
in_params (list) : list with the parameters | |
Returns: | |
list : list of the boxes coordinates | |
exception on error, string 'OK' otherwise | |
""" | |
# MMOCR detection method | |
out_mmocr_boxes_coordinates = [] | |
try: | |
det_result = _in_reader.readtext(in_image_path, details=True) | |
bboxes_list = [res['boundary_result'] for res in det_result] | |
for bboxes in bboxes_list: | |
for bbox in bboxes: | |
if len(bbox) > 9: | |
min_x = min(bbox[0:-1:2]) | |
min_y = min(bbox[1:-1:2]) | |
max_x = max(bbox[0:-1:2]) | |
max_y = max(bbox[1:-1:2]) | |
#box = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y] | |
else: | |
min_x = min(bbox[0:-1:2]) | |
min_y = min(bbox[1::2]) | |
max_x = max(bbox[0:-1:2]) | |
max_y = max(bbox[1::2]) | |
box4 = [ [min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y] ] | |
out_mmocr_boxes_coordinates.append(box4) | |
out_status = 'OK' | |
except Exception as e: | |
out_status = e | |
return out_mmocr_boxes_coordinates, out_status | |
### | |
def cropped_1box(in_box, in_img): | |
"""Construction of an cropped image corresponding to an area of the initial image | |
Args: | |
in_box (list) : box with coordinates | |
in_img (matrix) : image | |
Returns: | |
matrix : cropped image | |
""" | |
box_ar = np.array(in_box).astype(np.int64) | |
x_min = box_ar[:, 0].min() | |
x_max = box_ar[:, 0].max() | |
y_min = box_ar[:, 1].min() | |
y_max = box_ar[:, 1].max() | |
out_cropped = in_img[y_min:y_max, x_min:x_max] | |
return out_cropped | |
### | |
def tesserocr_detect(in_image_path, _in_img, in_params): | |
"""Detection with Tesseract | |
Args: | |
in_image_path (string) : locally saved image path | |
_in_img (PIL.Image) : image to consider | |
in_params (list) : list with the parameters for detection | |
Returns: | |
list : list of the boxes coordinates | |
exception on error, string 'OK' otherwise | |
""" | |
try: | |
dict_param = in_params[1] | |
df_res = pytesseract.image_to_data(_in_img, **dict_param, output_type=Output.DATAFRAME) | |
df_res['box'] = df_res.apply(lambda d: [[d['left'], d['top']], \ | |
[d['left'] + d['width'], d['top']], \ | |
[d['left'] + d['width'], d['top'] + d['height']], \ | |
[d['left'], d['top'] + d['height']], \ | |
], axis=1) | |
out_tesserocr_boxes_coordinates = df_res[df_res.word_num > 0]['box'].to_list() | |
out_status = 'OK' | |
except Exception as e: | |
out_tesserocr_boxes_coordinates = [] | |
out_status = e | |
return out_tesserocr_boxes_coordinates, out_status | |
### | |
def process_detect(in_image_path, _in_list_images, _in_list_readers, in_list_params, in_color): | |
"""Detection process for each OCR solution | |
Args: | |
in_image_path (string) : locally saved image path | |
_in_list_images (list) : list of original image | |
_in_list_readers (list) : list with previously initialized reader's instances | |
in_list_params (list) : list with dict parameters for each OCR solution | |
in_color (tuple) : color for boxes around text | |
Returns: | |
list: list of detection results images | |
list: list of boxes coordinates | |
""" | |
## ------- EasyOCR Text detection | |
with st.spinner('EasyOCR Text detection in progress ...'): | |
easyocr_boxes_coordinates,easyocr_status = easyocr_detect(_in_list_readers[0], \ | |
in_image_path, in_list_params[0]) | |
# Visualization | |
if easyocr_boxes_coordinates: | |
easyocr_image_detect = draw_detected(_in_list_images[0], easyocr_boxes_coordinates, \ | |
in_color, 'None', 3) | |
else: | |
easyocr_boxes_coordinates = easyocr_status | |
## | |
## ------- PPOCR Text detection | |
with st.spinner('PPOCR Text detection in progress ...'): | |
ppocr_boxes_coordinates, ppocr_status = ppocr_detect(_in_list_readers[1], in_image_path) | |
# Visualization | |
if ppocr_boxes_coordinates: | |
ppocr_image_detect = draw_detected(_in_list_images[0], ppocr_boxes_coordinates, \ | |
in_color, 'None', 3) | |
else: | |
ppocr_image_detect = ppocr_status | |
## | |
## ------- MMOCR Text detection | |
with st.spinner('MMOCR Text detection in progress ...'): | |
mmocr_boxes_coordinates, mmocr_status = mmocr_detect(_in_list_readers[2], in_image_path) | |
# Visualization | |
if mmocr_boxes_coordinates: | |
mmocr_image_detect = draw_detected(_in_list_images[0], mmocr_boxes_coordinates, \ | |
in_color, 'None', 3) | |
else: | |
mmocr_image_detect = mmocr_status | |
## | |
## ------- Tesseract Text detection | |
with st.spinner('Tesseract Text detection in progress ...'): | |
tesserocr_boxes_coordinates, tesserocr_status = tesserocr_detect(in_image_path, \ | |
_in_list_images[0], \ | |
in_list_params[3]) | |
# Visualization | |
if tesserocr_status == 'OK': | |
tesserocr_image_detect = draw_detected(_in_list_images[0],tesserocr_boxes_coordinates,\ | |
in_color, 'None', 3) | |
else: | |
tesserocr_image_detect = tesserocr_status | |
## | |
# | |
out_list_images = _in_list_images + [easyocr_image_detect, ppocr_image_detect, \ | |
mmocr_image_detect, tesserocr_image_detect] | |
out_list_coordinates = [easyocr_boxes_coordinates, ppocr_boxes_coordinates, \ | |
mmocr_boxes_coordinates, tesserocr_boxes_coordinates] | |
# | |
return out_list_images, out_list_coordinates | |
### | |
def draw_detected(in_image, in_boxes_coordinates, in_color, posit='None', in_thickness=4): | |
"""Draw boxes around detected text | |
Args: | |
in_image (PIL.Image) : original image | |
in_boxes_coordinates (list) : boxes coordinates, from top to bottom and from left to right | |
[ [ [x_min, y_min], [x_max, y_min], [x_max, y_max], [x_min, y_max] ], | |
[ ... ] | |
] | |
in_color (tuple) : color for boxes around text | |
posit (str, optional) : position for text. Defaults to 'None'. | |
in_thickness (int, optional): thickness of the box. Defaults to 4. | |
Returns: | |
PIL.Image : original image with detected areas | |
""" | |
work_img = in_image.copy() | |
if in_boxes_coordinates: | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
for ind_box, box in enumerate(in_boxes_coordinates): | |
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) | |
work_img = cv2.polylines(np.array(work_img), [box], True, in_color, in_thickness) | |
if posit != 'None': | |
if posit == 'top_left': | |
pos = tuple(box[0][0]) | |
elif posit == 'top_right': | |
pos = tuple(box[1][0]) | |
work_img = cv2.putText(work_img, str(ind_box+1), pos, font, 5.5, color, \ | |
in_thickness,cv2.LINE_AA) | |
out_image_drawn = Image.fromarray(work_img) | |
else: | |
out_image_drawn = work_img | |
return out_image_drawn | |
### | |
def get_cropped(in_boxes_coordinates, in_image_cv): | |
"""Construct list of cropped images corresponding of the input boxes coordinates list | |
Args: | |
in_boxes_coordinates (list) : list of boxes coordinates | |
in_image_cv (matrix) : original image | |
Returns: | |
list : list with cropped images | |
""" | |
out_list_images = [] | |
for box in in_boxes_coordinates: | |
cropped = cropped_1box(box, in_image_cv) | |
out_list_images.append(cropped) | |
return out_list_images | |
### | |
def process_recog(in_list_readers, in_image_cv, in_boxes_coordinates, in_list_dict_params): | |
"""Recognition process for each OCR solution | |
Args: | |
in_list_readers (list) : list with previously initialized reader's instances | |
in_image_cv (matrix) : original image | |
in_boxes_coordinates (list) : list of boxes coordinates | |
in_list_dict_params (list) : list with dict parameters for each OCR solution | |
Returns: | |
data frame : results for each OCR solution, except Tesseract | |
data frame : results for Tesseract | |
list : status for each recognition (exception or 'OK') | |
""" | |
out_df_results = pd.DataFrame([]) | |
list_text_easyocr = [] | |
list_confidence_easyocr = [] | |
list_text_ppocr = [] | |
list_confidence_ppocr = [] | |
list_text_mmocr = [] | |
list_confidence_mmocr = [] | |
# Create cropped images from detection | |
list_cropped_images = get_cropped(in_boxes_coordinates, in_image_cv) | |
# Recognize with EasyOCR | |
with st.spinner('EasyOCR Text recognition in progress ...'): | |
list_text_easyocr, list_confidence_easyocr, status_easyocr = \ | |
easyocr_recog(list_cropped_images, in_list_readers[0], in_list_dict_params[0]) | |
## | |
# Recognize with PPOCR | |
with st.spinner('PPOCR Text recognition in progress ...'): | |
list_text_ppocr, list_confidence_ppocr, status_ppocr = \ | |
ppocr_recog(list_cropped_images, in_list_dict_params[1]) | |
## | |
# Recognize with MMOCR | |
with st.spinner('MMOCR Text recognition in progress ...'): | |
list_text_mmocr, list_confidence_mmocr, status_mmocr = \ | |
mmocr_recog(list_cropped_images, in_list_dict_params[2]) | |
## | |
# Recognize with Tesseract | |
with st.spinner('Tesseract Text recognition in progress ...'): | |
out_df_results_tesseract, status_tesseract = \ | |
tesserocr_recog(in_image_cv, in_list_dict_params[3], len(list_cropped_images)) | |
## | |
# Create results data frame | |
out_df_results = pd.DataFrame({'cropped_image': list_cropped_images, | |
'text_easyocr': list_text_easyocr, | |
'confidence_easyocr': list_confidence_easyocr, | |
'text_ppocr': list_text_ppocr, | |
'confidence_ppocr': list_confidence_ppocr, | |
'text_mmocr': list_text_mmocr, | |
'confidence_mmocr': list_confidence_mmocr | |
} | |
) | |
out_list_reco_status = [status_easyocr, status_ppocr, status_mmocr, status_tesseract] | |
return out_df_results, out_df_results_tesseract, out_list_reco_status | |
### | |
def easyocr_recog(in_list_images, _in_reader_easyocr, in_params): | |
"""Recognition with EasyOCR | |
Args: | |
in_list_images (list) : list of cropped images | |
_in_reader_easyocr (EasyOCR reader) : the previously initialized instance | |
in_params (dict) : parameters for recognition | |
Returns: | |
list : list of recognized text | |
list : list of recognition confidence | |
string/Exception : recognition status | |
""" | |
progress_bar = st.progress(0) | |
out_list_text_easyocr = [] | |
out_list_confidence_easyocr = [] | |
## ------- EasyOCR Text recognition | |
try: | |
step = 0*len(in_list_images) # first recognition process | |
nb_steps = 4 * len(in_list_images) | |
for ind_img, cropped in enumerate(in_list_images): | |
result = _in_reader_easyocr.recognize(cropped, **in_params) | |
try: | |
out_list_text_easyocr.append(result[0][1]) | |
out_list_confidence_easyocr.append(np.round(100*result[0][2], 1)) | |
except: | |
out_list_text_easyocr.append('Not recognize') | |
out_list_confidence_easyocr.append(100.) | |
progress_bar.progress((step+ind_img+1)/nb_steps) | |
out_status = 'OK' | |
except Exception as e: | |
out_status = e | |
progress_bar.empty() | |
return out_list_text_easyocr, out_list_confidence_easyocr, out_status | |
### | |
def ppocr_recog(in_list_images, in_params): | |
"""Recognition with PPOCR | |
Args: | |
in_list_images (list) : list of cropped images | |
in_params (dict) : parameters for recognition | |
Returns: | |
list : list of recognized text | |
list : list of recognition confidence | |
string/Exception : recognition status | |
""" | |
## ------- PPOCR Text recognition | |
out_list_text_ppocr = [] | |
out_list_confidence_ppocr = [] | |
try: | |
reader_ppocr = PaddleOCR(**in_params) | |
step = 1*len(in_list_images) # second recognition process | |
nb_steps = 4 * len(in_list_images) | |
progress_bar = st.progress(step/nb_steps) | |
for ind_img, cropped in enumerate(in_list_images): | |
result = reader_ppocr.ocr(cropped, det=False, cls=False) | |
try: | |
out_list_text_ppocr.append(result[0][0]) | |
out_list_confidence_ppocr.append(np.round(100*result[0][1], 1)) | |
except: | |
out_list_text_ppocr.append('Not recognize') | |
out_list_confidence_ppocr.append(100.) | |
progress_bar.progress((step+ind_img+1)/nb_steps) | |
out_status = 'OK' | |
except Exception as e: | |
out_status = e | |
progress_bar.empty() | |
return out_list_text_ppocr, out_list_confidence_ppocr, out_status | |
### | |
def mmocr_recog(in_list_images, in_params): | |
"""Recognition with MMOCR | |
Args: | |
in_list_images (list) : list of cropped images | |
in_params (dict) : parameters for recognition | |
Returns: | |
list : list of recognized text | |
list : list of recognition confidence | |
string/Exception : recognition status | |
""" | |
## ------- MMOCR Text recognition | |
out_list_text_mmocr = [] | |
out_list_confidence_mmocr = [] | |
try: | |
reader_mmocr = MMOCR(det=None, **in_params) | |
step = 2*len(in_list_images) # third recognition process | |
nb_steps = 4 * len(in_list_images) | |
progress_bar = st.progress(step/nb_steps) | |
for ind_img, cropped in enumerate(in_list_images): | |
result = reader_mmocr.readtext(cropped, details=True) | |
try: | |
out_list_text_mmocr.append(result[0]['text']) | |
out_list_confidence_mmocr.append(np.round(100* \ | |
(np.array(result[0]['score']).mean()), 1)) | |
except: | |
out_list_text_mmocr.append('Not recognize') | |
out_list_confidence_mmocr.append(100.) | |
progress_bar.progress((step+ind_img+1)/nb_steps) | |
out_status = 'OK' | |
except Exception as e: | |
out_status = e | |
progress_bar.empty() | |
return out_list_text_mmocr, out_list_confidence_mmocr, out_status | |
### | |
def tesserocr_recog(in_img, in_params, in_nb_images): | |
"""Recognition with Tesseract | |
Args: | |
in_image_cv (matrix) : original image | |
in_params (dict) : parameters for recognition | |
in_nb_images : nb cropped images (used for progress bar) | |
Returns: | |
Pandas data frame : recognition results | |
string/Exception : recognition status | |
""" | |
## ------- Tesseract Text recognition | |
step = 3*in_nb_images # fourth recognition process | |
nb_steps = 4 * in_nb_images | |
progress_bar = st.progress(step/nb_steps) | |
try: | |
out_df_result = pytesseract.image_to_data(in_img, **in_params,output_type=Output.DATAFRAME) | |
out_df_result['box'] = out_df_result.apply(lambda d: [[d['left'], d['top']], \ | |
[d['left'] + d['width'], d['top']], \ | |
[d['left']+d['width'], d['top']+d['height']], \ | |
[d['left'], d['top'] + d['height']], \ | |
], axis=1) | |
out_df_result['cropped'] = out_df_result['box'].apply(lambda b: cropped_1box(b, in_img)) | |
out_df_result = out_df_result[(out_df_result.word_num > 0) & (out_df_result.text != ' ')] \ | |
.reset_index(drop=True) | |
out_status = 'OK' | |
except Exception as e: | |
out_df_result = pd.DataFrame([]) | |
out_status = e | |
progress_bar.progress(1.) | |
return out_df_result, out_status | |
### | |
def draw_reco_images(in_image, in_boxes_coordinates, in_list_texts, in_list_confid, \ | |
in_dict_back_colors, in_df_results_tesseract, in_reader_type_list, \ | |
in_font_scale=1, in_conf_threshold=65): | |
"""Draw recognized text on original image, for each OCR solution used | |
Args: | |
in_image (matrix) : original image | |
in_boxes_coordinates (list) : list of boxes coordinates | |
in_list_texts (list): list of recognized text for each recognizer (except Tesseract) | |
in_list_confid (list): list of recognition confidence for each recognizer (except Tesseract) | |
in_df_results_tesseract (Pandas data frame): Tesseract recognition results | |
in_font_scale (int, optional): text font scale. Defaults to 3. | |
Returns: | |
shows the results container | |
""" | |
img = in_image.copy() | |
nb_readers = len(in_reader_type_list) | |
list_reco_images = [img.copy() for i in range(nb_readers)] | |
for num, box_ in enumerate(in_boxes_coordinates): | |
box = np.array(box_).astype(np.int64) | |
# For each box : draw the results of each recognizer | |
for ind_r in range(nb_readers-1): | |
confid = np.round(in_list_confid[ind_r][num], 0) | |
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") | |
if confid < in_conf_threshold: | |
text_color = (0, 0, 0) | |
else: | |
text_color = (255, 255, 255) | |
list_reco_images[ind_r] = cv2.rectangle(list_reco_images[ind_r], \ | |
(box[0][0], box[0][1]), \ | |
(box[2][0], box[2][1]), rgb_color, -1) | |
list_reco_images[ind_r] = cv2.putText(list_reco_images[ind_r], \ | |
in_list_texts[ind_r][num], \ | |
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ | |
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) | |
# Add Tesseract process | |
if not in_df_results_tesseract.empty: | |
ind_tessocr = nb_readers-1 | |
for num, box_ in enumerate(in_df_results_tesseract['box'].to_list()): | |
box = np.array(box_).astype(np.int64) | |
confid = np.round(in_df_results_tesseract.iloc[num]['conf'], 0) | |
rgb_color = ImageColor.getcolor(in_dict_back_colors[confid], "RGB") | |
if confid < in_conf_threshold: | |
text_color = (0, 0, 0) | |
else: | |
text_color = (255, 255, 255) | |
list_reco_images[ind_tessocr] = \ | |
cv2.rectangle(list_reco_images[ind_tessocr], (box[0][0], box[0][1]), \ | |
(box[2][0], box[2][1]), rgb_color, -1) | |
try: | |
list_reco_images[ind_tessocr] = \ | |
cv2.putText(list_reco_images[ind_tessocr], \ | |
in_df_results_tesseract.iloc[num]['text'], \ | |
(box[0][0],int(np.round((box[0][1]+box[2][1])/2,0))), \ | |
cv2.FONT_HERSHEY_DUPLEX, in_font_scale, text_color, 2) | |
except: | |
pass | |
with show_reco.container(): | |
# Draw the results, 2 images per line | |
reco_lines = math.ceil(len(in_reader_type_list) / 2) | |
column_width = 400 | |
for ind_lig in range(0, reco_lines+1, 2): | |
cols = st.columns(2) | |
for ind_col in range(2): | |
ind = ind_lig + ind_col | |
if ind <= len(in_reader_type_list): | |
if in_reader_type_list[ind] == 'Tesseract': | |
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \ | |
">Recognition with ' + in_reader_type_list[ind] + \ | |
'<sp style="font-size: 17px"> (with its own detector) \ | |
</sp></p>' | |
else: | |
column_title = '<p style="font-size: 20px;color:rgb(0,0,0); \ | |
">Recognition with ' + \ | |
in_reader_type_list[ind]+ '</p>' | |
cols[ind_col].markdown(column_title, unsafe_allow_html=True) | |
if st.session_state.list_reco_status[ind] == 'OK': | |
cols[ind_col].image(list_reco_images[ind], \ | |
width=column_width, use_column_width=True) | |
else: | |
cols[ind_col].write(list_reco_status[ind], \ | |
use_column_width=True) | |
st.markdown(' 💡 Bad font size? you can adjust it below and refresh:') | |
### | |
def highlight(): | |
""" Highlight choosen detector results | |
""" | |
with show_detect.container(): | |
columns_size = [1 for x in reader_type_list] | |
column_width = [300 for x in reader_type_list] | |
columns_color = ["rgb(0,0,0)" for x in reader_type_list] | |
columns_size[reader_type_dict[st.session_state.detect_reader]] = 2 | |
column_width[reader_type_dict[st.session_state.detect_reader]] = 400 | |
columns_color[reader_type_dict[st.session_state.detect_reader]] = "rgb(228,26,28)" | |
columns = st.columns(columns_size, ) #gap='medium') | |
for ind_col, col in enumerate(columns): | |
column_title = '<p style="font-size: 20px;color:'+columns_color[ind_col] + \ | |
';">Detection with ' + reader_type_list[ind_col]+ '</p>' | |
col.markdown(column_title, unsafe_allow_html=True) | |
if isinstance(list_images[ind_col+2], PIL.Image.Image): | |
col.image(list_images[ind_col+2], width=column_width[ind_col], \ | |
use_column_width=True) | |
else: | |
col.write(list_images[ind_col+2], use_column_width=True) | |
st.session_state.columns_size = columns_size | |
st.session_state.column_width = column_width | |
st.session_state.columns_color = columns_color | |
### | |
def get_demo(): | |
"""Get the demo files | |
Returns: | |
PIL.Image : input file opened with Pillow | |
PIL.Image : input file opened with Pillow | |
""" | |
out_img_demo_1 = Image.open("img_demo_1.jpg") | |
out_img_demo_2 = Image.open("img_demo_2.jpg") | |
return out_img_demo_1, out_img_demo_2 | |
### | |
def raz(): | |
st.session_state.list_coordinates = [] | |
st.session_state.list_images = [] | |
st.session_state.detect_reader = reader_type_list[0] | |
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]] | |
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]] | |
st.session_state.columns_color = ["rgb(228,26,28)"] + \ | |
["rgb(0,0,0)" for x in reader_type_list[1:]] | |
# Clear caches | |
easyocr_detect.clear() | |
ppocr_detect.clear() | |
mmocr_detect.clear() | |
tesserocr_detect.clear() | |
process_detect.clear() | |
get_cropped.clear() | |
easyocr_recog.clear() | |
ppocr_recog.clear() | |
mmocr_recog.clear() | |
tesserocr_recog.clear() | |
##----------- Initializations --------------------------------------------------------------------- | |
#print("PID : ", os.getpid()) | |
st.title("OCR solutions comparator") | |
st.markdown("##### *EasyOCR, PPOCR, MMOCR, Tesseract*") | |
#st.markdown("#### PID : " + str(os.getpid())) | |
# Initializations | |
with st.spinner("Initializations in progress ..."): | |
reader_type_list, reader_type_dict, list_dict_lang, \ | |
cols_size, dict_back_colors, fig_colorscale = initializations() | |
img_demo_1, img_demo_2 = get_demo() | |
##----------- Choose language & image ------------------------------------------------------------- | |
st.markdown("#### Choose languages for the text recognition:") | |
lang_col = st.columns(4) | |
easyocr_key_lang = lang_col[0].selectbox(reader_type_list[0]+" :", list_dict_lang[0].keys(), 26) | |
easyocr_lang = list_dict_lang[0][easyocr_key_lang] | |
ppocr_key_lang = lang_col[1].selectbox(reader_type_list[1]+" :", list_dict_lang[1].keys(), 22) | |
ppocr_lang = list_dict_lang[1][ppocr_key_lang] | |
mmocr_key_lang = lang_col[2].selectbox(reader_type_list[2]+" :", list_dict_lang[2].keys(), 0) | |
mmocr_lang = list_dict_lang[2][mmocr_key_lang] | |
tesserocr_key_lang = lang_col[3].selectbox(reader_type_list[3]+" :", list_dict_lang[3].keys(), 35) | |
tesserocr_lang = list_dict_lang[3][tesserocr_key_lang] | |
st.markdown("#### Choose picture:") | |
cols_pict = st.columns([1, 2]) | |
img_typ = cols_pict[0].radio("", ['Upload file', 'Take a picture', 'Use a demo file'], \ | |
index=0, on_change=raz) | |
if img_typ == 'Upload file': | |
image_file = cols_pict[1].file_uploader("Upload a file:", type=["jpg","jpeg"], on_change=raz) | |
if img_typ == 'Take a picture': | |
image_file = cols_pict[1].camera_input("Take a picture:", on_change=raz) | |
if img_typ == 'Use a demo file': | |
with st.expander('Choose a demo file:', expanded=True): | |
demo_used = st.radio('', ['File 1', 'File 2'], index=0, \ | |
horizontal=True, on_change=raz) | |
cols_demo = st.columns([1, 2]) | |
cols_demo[0].markdown('###### File 1') | |
cols_demo[0].image(img_demo_1, width=150) | |
cols_demo[1].markdown('###### File 2') | |
cols_demo[1].image(img_demo_2, width=300) | |
if demo_used == 'File 1': | |
image_file = 'img_demo_1.jpg' | |
else: | |
image_file = 'img_demo_2.jpg' | |
##----------- Process input image ----------------------------------------------------------------- | |
if image_file is not None: | |
image_path, image_orig, image_cv2 = load_image(image_file) | |
list_images = [image_orig, image_cv2] | |
##----------- Form with original image & hyperparameters for detectors ---------------------------- | |
with st.form("form1"): | |
col1, col2 = st.columns(2, ) #gap="medium") | |
col1.markdown("##### Original image") | |
col1.image(list_images[0], width=400) | |
col2.markdown("##### Hyperparameters values for detection") | |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[0], \ | |
expanded=False): | |
t0_min_size = st.slider("min_size", 1, 20, 10, step=1, \ | |
help="min_size (int, default = 10) - Filter text box smaller than \ | |
minimum value in pixel") | |
t0_text_threshold = st.slider("text_threshold", 0.1, 1., 0.7, step=0.1, \ | |
help="text_threshold (float, default = 0.7) - Text confidence threshold") | |
t0_low_text = st.slider("low_text", 0.1, 1., 0.4, step=0.1, \ | |
help="low_text (float, default = 0.4) - Text low-bound score") | |
t0_link_threshold = st.slider("link_threshold", 0.1, 1., 0.4, step=0.1, \ | |
help="link_threshold (float, default = 0.4) - Link confidence threshold") | |
t0_canvas_size = st.slider("canvas_size", 2000, 5000, 2560, step=10, \ | |
help='''canvas_size (int, default = 2560) \n | |
Maximum e size. Image bigger than this value will be resized down''') | |
t0_mag_ratio = st.slider("mag_ratio", 0.1, 5., 1., step=0.1, \ | |
help="mag_ratio (float, default = 1) - Image magnification ratio") | |
t0_slope_ths = st.slider("slope_ths", 0.01, 1., 0.1, step=0.01, \ | |
help='''slope_ths (float, default = 0.1) - Maximum slope \ | |
(delta y/delta x) to considered merging. \n | |
Low valuans tiled boxes will not be merged.''') | |
t0_ycenter_ths = st.slider("ycenter_ths", 0.1, 1., 0.5, step=0.1, \ | |
help='''ycenter_ths (float, default = 0.5) - Maximum shift in y direction. \n | |
Boxes wiifferent level should not be merged.''') | |
t0_height_ths = st.slider("height_ths", 0.1, 1., 0.5, step=0.1, \ | |
help='''height_ths (float, default = 0.5) - Maximum different in box height. \n | |
Boxes wiery different text size should not be merged.''') | |
t0_width_ths = st.slider("width_ths", 0.1, 1., 0.5, step=0.1, \ | |
help="width_ths (float, default = 0.5) - Maximum horizontal \ | |
distance to merge boxes.") | |
t0_add_margin = st.slider("add_margin", 0.1, 1., 0.1, step=0.1, \ | |
help='''add_margin (float, default = 0.1) - \ | |
Extend bounding boxes in all direction by certain value. \n | |
This is rtant for language with complex script (E.g. Thai).''') | |
t0_optimal_num_chars = st.slider("optimal_num_chars", None, 100, None, step=10, \ | |
help="optimal_num_chars (int, default = None) - If specified, bounding boxes \ | |
with estimated number of characters near this value are returned first.") | |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[1], \ | |
expanded=False): | |
t1_det_algorithm = st.selectbox('det_algorithm', ['DB'], \ | |
help='Type of detection algorithm selected. (default = DB)') | |
t1_det_max_side_len = st.slider('det_max_side_len', 500, 2000, 960, step=10, \ | |
help='''The maximum size of the long side of the image. (default = 960)\n | |
Limit thximum image height and width.\n | |
When theg side exceeds this value, the long side will be resized to this size, and the short side \ | |
will be ed proportionally.''') | |
t1_det_db_thresh = st.slider('det_db_thresh', 0.1, 1., 0.3, step=0.1, \ | |
help='''Binarization threshold value of DB output map. (default = 0.3) \n | |
Used to er the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result.''') | |
t1_det_db_box_thresh = st.slider('det_db_box_thresh', 0.1, 1., 0.6, step=0.1, \ | |
help='''The threshold value of the DB output box. (default = 0.6) \n | |
DB post-essing filter box threshold, if there is a missing box detected, it can be reduced as appropriate. \n | |
Boxes sclower than this value will be discard.''') | |
t1_det_db_unclip_ratio = st.slider('det_db_unclip_ratio', 1., 3.0, 1.6, step=0.1, \ | |
help='''The expanded ratio of DB output box. (default = 1.6) \n | |
Indicatee compactness of the text box, the smaller the value, the closer the text box to the text.''') | |
t1_det_east_score_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.8, step=0.1, \ | |
help="Binarization threshold value of EAST output map. (default = 0.8)") | |
t1_det_east_cover_thresh = st.slider('det_east_cover_thresh', 0.1, 1., 0.1, step=0.1, \ | |
help='''The threshold value of the EAST output box. (default = 0.1) \n | |
Boxes sclower than this value will be discarded.''') | |
t1_det_east_nms_thresh = st.slider('det_east_nms_thresh', 0.1, 1., 0.2, step=0.1, \ | |
help="The NMS threshold value of EAST model output box. (default = 0.2)") | |
t1_det_db_score_mode = st.selectbox('det_db_score_mode', ['fast', 'slow'], \ | |
help='''slow: use polygon box to calculate bbox score, fast: use rectangle box \ | |
to calculate. (default = fast) \n | |
Use rectlar box to calculate faster, and polygonal box more accurate for curved text area.''') | |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[2], \ | |
expanded=False): | |
t2_det = st.selectbox('det', ['DB_r18','DB_r50','DBPP_r50','DRRG','FCE_IC15', \ | |
'FCE_CTW_DCNv2','MaskRCNN_CTW','MaskRCNN_IC15', \ | |
'MaskRCNN_IC17', 'PANet_CTW','PANet_IC15','PS_CTW',\ | |
'PS_IC15','Tesseract','TextSnake'], 10, \ | |
help='Text detection algorithm. (default = PANet_IC15)') | |
st.write("###### *More about text detection models* 👉 \ | |
[here](https://mmocr.readthedocs.io/en/latest/textdet_models.html)") | |
t2_merge_xdist = st.slider('merge_xdist', 1, 50, 20, step=1, \ | |
help='The maximum x-axis distance to merge boxes. (defaut=20)') | |
with col2.expander("Choose detection hyperparameters for " + reader_type_list[3], \ | |
expanded=False): | |
t3_psm = st.selectbox('Page segmentation mode (psm)', \ | |
[' - Default', \ | |
' 4 Assume a single column of text of variable sizes', \ | |
' 5 Assume a single uniform block of vertically aligned text', \ | |
' 6 Assume a single uniform block of text', \ | |
' 7 Treat the image as a single text line', \ | |
' 8 Treat the image as a single word', \ | |
' 9 Treat the image as a single word in a circle', \ | |
'10 Treat the image as a single character', \ | |
'11 Sparse text. Find as much text as possible in no \ | |
particular order', \ | |
'13 Raw line. Treat the image as a single text line, \ | |
bypassing hacks that are Tesseract-specific']) | |
t3_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ | |
'1 Neural nets LSTM engine only', \ | |
'2 Legacy + LSTM engines', \ | |
'3 Default, based on what is available'], 3) | |
t3_whitelist = st.text_input('Limit tesseract to recognize only this characters :', \ | |
placeholder='Limit tesseract to recognize only this characters', \ | |
help='Example for numbers only : 0123456789') | |
color_hex = col2.color_picker('Set a color for box outlines:', '#004C99') | |
color_part = color_hex.lstrip('#') | |
color = tuple(int(color_part[i:i+2], 16) for i in (0, 2, 4)) | |
submit_detect = st.form_submit_button("Launch detection") | |
##----------- Process text detection -------------------------------------------------------------- | |
if submit_detect: | |
# Process text detection | |
if t0_optimal_num_chars == 0: | |
t0_optimal_num_chars = None | |
# Construct the config Tesseract parameter | |
t3_config = '' | |
psm = t3_psm[:2] | |
if psm != ' -': | |
t3_config += '--psm ' + psm.strip() | |
oem = t3_oem[:1] | |
if oem != '3': | |
t3_config += ' --oem ' + oem | |
if t3_whitelist != '': | |
t3_config += ' -c tessedit_char_whitelist=' + t3_whitelist | |
list_params_det = \ | |
[[easyocr_lang, \ | |
{'min_size': t0_min_size, 'text_threshold': t0_text_threshold, \ | |
'low_text': t0_low_text, 'link_threshold': t0_link_threshold, \ | |
'canvas_size': t0_canvas_size, 'mag_ratio': t0_mag_ratio, \ | |
'slope_ths': t0_slope_ths, 'ycenter_ths': t0_ycenter_ths, \ | |
'height_ths': t0_height_ths, 'width_ths': t0_width_ths, \ | |
'add_margin': t0_add_margin, 'optimal_num_chars': t0_optimal_num_chars \ | |
}], \ | |
[ppocr_lang, \ | |
{'det_algorithm': t1_det_algorithm, 'det_max_side_len': t1_det_max_side_len, \ | |
'det_db_thresh': t1_det_db_thresh, 'det_db_box_thresh': t1_det_db_box_thresh, \ | |
'det_db_unclip_ratio': t1_det_db_unclip_ratio, \ | |
'det_east_score_thresh': t1_det_east_score_thresh, \ | |
'det_east_cover_thresh': t1_det_east_cover_thresh, \ | |
'det_east_nms_thresh': t1_det_east_nms_thresh, \ | |
'det_db_score_mode': t1_det_db_score_mode}], | |
[mmocr_lang, {'det': t2_det, 'merge_xdist': t2_merge_xdist}], | |
[tesserocr_lang, {'lang': tesserocr_lang, 'config': t3_config}] | |
] | |
show_info1 = st.empty() | |
show_info1.info("Readers initializations in progress (it may take a while) ...") | |
list_readers = init_readers(list_params_det) | |
show_info1.info("Text detection in progress ...") | |
list_images, list_coordinates = process_detect(image_path, list_images, list_readers, \ | |
list_params_det, color) | |
show_info1.empty() | |
# Clear previous recognition results | |
st.session_state.df_results = pd.DataFrame([]) | |
st.session_state.list_readers = list_readers | |
st.session_state.list_coordinates = list_coordinates | |
st.session_state.list_images = list_images | |
st.session_state.list_params_det = list_params_det | |
if 'columns_size' not in st.session_state: | |
st.session_state.columns_size = [2] + [1 for x in reader_type_list[1:]] | |
if 'column_width' not in st.session_state: | |
st.session_state.column_width = [400] + [300 for x in reader_type_list[1:]] | |
if 'columns_color' not in st.session_state: | |
st.session_state.columns_color = ["rgb(228,26,28)"] + \ | |
["rgb(0,0,0)" for x in reader_type_list[1:]] | |
if st.session_state.list_coordinates: | |
list_coordinates = st.session_state.list_coordinates | |
list_images = st.session_state.list_images | |
list_readers = st.session_state.list_readers | |
list_params_det = st.session_state.list_params_det | |
##----------- Text detection results -------------------------------------------------------------- | |
st.subheader("Text detection") | |
show_detect = st.empty() | |
list_ok_detect = [] | |
with show_detect.container(): | |
columns = st.columns(st.session_state.columns_size, ) #gap='medium') | |
for no_col, col in enumerate(columns): | |
column_title = '<p style="font-size: 20px;color:' + \ | |
st.session_state.columns_color[no_col] + \ | |
';">Detection with ' + reader_type_list[no_col]+ '</p>' | |
col.markdown(column_title, unsafe_allow_html=True) | |
if isinstance(list_images[no_col+2], PIL.Image.Image): | |
col.image(list_images[no_col+2], width=st.session_state.column_width[no_col], \ | |
use_column_width=True) | |
list_ok_detect.append(reader_type_list[no_col]) | |
else: | |
col.write(list_images[no_col+2], use_column_width=True) | |
st.subheader("Text recognition") | |
st.markdown("##### Using detection performed above by:") | |
st.radio('Choose the detecter:', list_ok_detect, key='detect_reader', \ | |
horizontal=True, on_change=highlight) | |
##----------- Form with hyperparameters for recognition ----------------------- | |
st.markdown("##### Hyperparameters values for recognition:") | |
with st.form("form2"): | |
with st.expander("Choose recognition hyperparameters for " + reader_type_list[0], \ | |
expanded=False): | |
t0_decoder = st.selectbox('decoder', ['greedy', 'beamsearch', 'wordbeamsearch'], \ | |
help="decoder (string, default = 'greedy') - options are 'greedy', \ | |
'beamsearch' and 'wordbeamsearch.") | |
t0_beamWidth = st.slider('beamWidth', 2, 20, 5, step=1, \ | |
help="beamWidth (int, default = 5) - How many beam to keep when decoder = \ | |
'beamsearch' or 'wordbeamsearch'.") | |
t0_batch_size = st.slider('batch_size', 1, 10, 1, step=1, \ | |
help="batch_size (int, default = 1) - batch_size>1 will make EasyOCR faster \ | |
but use more memory.") | |
t0_workers = st.slider('workers', 0, 10, 0, step=1, \ | |
help="workers (int, default = 0) - Number thread used in of dataloader.") | |
t0_allowlist = st.text_input('allowlist', value="", max_chars=None, \ | |
placeholder='Force EasyOCR to recognize only this subset of characters', \ | |
help='''allowlist (string) - Force EasyOCR to recognize only subset of characters.\n | |
Usefor specific problem (E.g. license plate, etc.)''') | |
t0_blocklist = st.text_input('blocklist', value="", max_chars=None, \ | |
placeholder='Block subset of character (will be ignored if allowlist is given)', \ | |
help='''blocklist (string) - Block subset of character. This argument will be \ | |
ignored if allowlist is given.''') | |
t0_detail = st.radio('detail', [0, 1], 1, horizontal=True, \ | |
help="detail (int, default = 1) - Set this to 0 for simple output") | |
t0_paragraph = st.radio('paragraph', [True, False], 1, horizontal=True, \ | |
help='paragraph (bool, default = False) - Combine result into paragraph') | |
t0_contrast_ths = st.slider('contrast_ths', 0.05, 1., 0.1, step=0.01, \ | |
help='''contrast_ths (float, default = 0.1) - Text box with contrast lower than \ | |
this value will be passed into model 2 times.\n | |
Firs with original image and second with contrast adjusted to 'adjust_contrast' value.\n | |
The with more confident level will be returned as a result.''') | |
t0_adjust_contrast = st.slider('adjust_contrast', 0.1, 1., 0.5, step=0.1, \ | |
help = 'adjust_contrast (float, default = 0.5) - target contrast level for low \ | |
contrast text box') | |
with st.expander("Choose recognition hyperparameters for " + reader_type_list[1], \ | |
expanded=False): | |
t1_rec_algorithm = st.selectbox('rec_algorithm', ['CRNN', 'SVTR_LCNet'], 0, \ | |
help="Type of recognition algorithm selected. (default=CRNN)") | |
t1_rec_batch_num = st.slider('rec_batch_num', 1, 50, step=1, \ | |
help="When performing recognition, the batchsize of forward images. \ | |
(default=30)") | |
t1_max_text_length = st.slider('max_text_length', 3, 250, 25, step=1, \ | |
help="The maximum text length that the recognition algorithm can recognize. \ | |
(default=25)") | |
t1_use_space_char = st.radio('use_space_char', [True, False], 0, horizontal=True, \ | |
help="Whether to recognize spaces. (default=TRUE)") | |
t1_drop_score = st.slider('drop_score', 0., 1., 0.25, step=.05, \ | |
help="Filter the output by score (from the recognition model), and those \ | |
below this score will not be returned. (default=0.5)") | |
with st.expander("Choose recognition hyperparameters for " + reader_type_list[2], \ | |
expanded=False): | |
t2_recog = st.selectbox('recog', ['ABINet','CRNN','CRNN_TPS','MASTER', \ | |
'NRTR_1/16-1/8','NRTR_1/8-1/4','RobustScanner','SAR','SAR_CN', \ | |
'SATRN','SATRN_sm','SEG','Tesseract'], 7, \ | |
help='Text recognition algorithm. (default = SAR)') | |
st.write("###### *More about text recognition models* 👉 \ | |
[here](https://mmocr.readthedocs.io/en/latest/textrecog_models.html)") | |
with st.expander("Choose recognition hyperparameters for " + reader_type_list[3], \ | |
expanded=False): | |
t3r_psm = st.selectbox('Page segmentation mode (psm)', \ | |
[' - Default', \ | |
' 4 Assume a single column of text of variable sizes', \ | |
' 5 Assume a single uniform block of vertically aligned \ | |
text', \ | |
' 6 Assume a single uniform block of text', \ | |
' 7 Treat the image as a single text line', \ | |
' 8 Treat the image as a single word', \ | |
' 9 Treat the image as a single word in a circle', \ | |
'10 Treat the image as a single character', \ | |
'11 Sparse text. Find as much text as possible in no \ | |
particular order', \ | |
'13 Raw line. Treat the image as a single text line, \ | |
bypassing hacks that are Tesseract-specific']) | |
t3r_oem = st.selectbox('OCR engine mode', ['0 Legacy engine only', \ | |
'1 Neural nets LSTM engine only', \ | |
'2 Legacy + LSTM engines', \ | |
'3 Default, based on what is available'], 3) | |
t3r_whitelist = st.text_input('Limit tesseract to recognize only this \ | |
characters :', \ | |
placeholder='Limit tesseract to recognize only this characters', \ | |
help='Example for numbers only : 0123456789') | |
submit_reco = st.form_submit_button("Launch recognition") | |
if submit_reco: | |
process_detect.clear() | |
##----------- Process recognition ------------------------------------------ | |
reader_ind = reader_type_dict[st.session_state.detect_reader] | |
list_boxes = list_coordinates[reader_ind] | |
# Construct the config Tesseract parameter | |
t3r_config = '' | |
psm = t3r_psm[:2] | |
if psm != ' -': | |
t3r_config += '--psm ' + psm.strip() | |
oem = t3r_oem[:1] | |
if oem != '3': | |
t3r_config += ' --oem ' + oem | |
if t3r_whitelist != '': | |
t3r_config += ' -c tessedit_char_whitelist=' + t3r_whitelist | |
list_params_rec = \ | |
[{'decoder': t0_decoder, 'beamWidth': t0_beamWidth, \ | |
'batch_size': t0_batch_size, 'workers': t0_workers, \ | |
'allowlist': t0_allowlist, 'blocklist': t0_blocklist, \ | |
'detail': t0_detail, 'paragraph': t0_paragraph, \ | |
'contrast_ths': t0_contrast_ths, 'adjust_contrast': t0_adjust_contrast | |
}, | |
{ **list_params_det[1][1], **{'rec_algorithm': t1_rec_algorithm, \ | |
'rec_batch_num': t1_rec_batch_num, 'max_text_length': t1_max_text_length, \ | |
'use_space_char': t1_use_space_char, 'drop_score': t1_drop_score}, \ | |
**{'lang': list_params_det[1][0]} | |
}, | |
{'recog': t2_recog}, | |
{'lang': tesserocr_lang, 'config': t3r_config} | |
] | |
show_info2 = st.empty() | |
with show_info2.container(): | |
st.info("Text recognition in progress ...") | |
df_results, df_results_tesseract, list_reco_status = \ | |
process_recog(list_readers, list_images[1], list_boxes, list_params_rec) | |
show_info2.empty() | |
st.session_state.df_results = df_results | |
st.session_state.list_boxes = list_boxes | |
st.session_state.df_results_tesseract = df_results_tesseract | |
st.session_state.list_reco_status = list_reco_status | |
if 'df_results' in st.session_state: | |
if not st.session_state.df_results.empty: | |
##----------- Show recognition results ------------------------------------------------------------ | |
results_cols = st.session_state.df_results.columns | |
list_col_text = np.arange(1, len(cols_size), 2) | |
list_col_confid = np.arange(2, len(cols_size), 2) | |
dict_draw_reco = {'in_image': st.session_state.list_images[1], \ | |
'in_boxes_coordinates': st.session_state.list_boxes, \ | |
'in_list_texts': [st.session_state.df_results[x].to_list() \ | |
for x in results_cols[list_col_text]], \ | |
'in_list_confid': [st.session_state.df_results[x].to_list() \ | |
for x in results_cols[list_col_confid]], \ | |
'in_dict_back_colors': dict_back_colors, \ | |
'in_df_results_tesseract' : st.session_state.df_results_tesseract, \ | |
'in_reader_type_list': reader_type_list | |
} | |
show_reco = st.empty() | |
with st.form("form3"): | |
st.plotly_chart(fig_colorscale, use_container_width=True) | |
col_font, col_threshold = st.columns(2) | |
col_font.slider('Font scale', 1, 7, 1, step=1, key="font_scale_sld") | |
col_threshold.slider('% confidence threshold for text color change', 40, 100, 64, \ | |
step=1, key="conf_threshold_sld") | |
col_threshold.write("(text color is black below this % confidence threshold, \ | |
and white above)") | |
draw_reco_images(**dict_draw_reco) | |
submit_resize = st.form_submit_button("Refresh") | |
if submit_resize: | |
draw_reco_images(**dict_draw_reco, \ | |
in_font_scale=st.session_state.font_scale_sld, \ | |
in_conf_threshold=st.session_state.conf_threshold_sld) | |
st.subheader("Recognition details") | |
with st.expander("Detailed areas for EasyOCR, PPOCR, MMOCR", expanded=True): | |
cols = st.columns(cols_size) | |
cols[0].markdown('#### Detected area') | |
for i in range(1, (len(reader_type_list)-1)*2, 2): | |
cols[i].markdown('#### with ' + reader_type_list[i//2]) | |
for row in st.session_state.df_results.itertuples(): | |
#cols = st.columns(1 + len(reader_type_list)*2) | |
cols = st.columns(cols_size) | |
cols[0].image(row.cropped_image, width=150) | |
for ind_col in range(1, len(cols), 2): | |
cols[ind_col].write(getattr(row, results_cols[ind_col])) | |
cols[ind_col+1].write("("+str( \ | |
getattr(row, results_cols[ind_col+1]))+"%)") | |
st.download_button( | |
label="Download results as CSV file", | |
data=convert_df(st.session_state.df_results), | |
file_name='OCR_comparator_results.csv', | |
mime='text/csv', | |
) | |
if not st.session_state.df_results_tesseract.empty: | |
with st.expander("Detailed areas for Tesseract", expanded=False): | |
cols = st.columns([2,2,1]) | |
cols[0].markdown('#### Detected area') | |
cols[1].markdown('#### with Tesseract') | |
for row in st.session_state.df_results_tesseract.itertuples(): | |
cols = st.columns([2,2,1]) | |
cols[0].image(row.cropped, width=150) | |
cols[1].write(getattr(row, 'text')) | |
cols[2].write("("+str(getattr(row, 'conf'))+"%)") | |
st.download_button( | |
label="Download Tesseract results as CSV file", | |
data=convert_df(st.session_state.df_results), | |
file_name='OCR_comparator_Tesseract_results.csv', | |
mime='text/csv', | |
) | |