qingxu99 commited on
Commit
4b9078a
·
1 Parent(s): 62d14cf

merge jittor branch

Browse files
docs/Dockerfile+JittorLLM ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # How to build | 如何构建: docker build -t gpt-academic-jittor --network=host -f Dockerfile+ChatGLM .
2
+ # How to run | (1) 我想直接一键运行(选择0号GPU): docker run --rm -it --net=host --gpus \"device=0\" gpt-academic-jittor bash
3
+ # How to run | (2) 我想运行之前进容器做一些调整(选择1号GPU): docker run --rm -it --net=host --gpus \"device=1\" gpt-academic-jittor bash
4
+
5
+ # 从NVIDIA源,从而支持显卡运损(检查宿主的nvidia-smi中的cuda版本必须>=11.3)
6
+ FROM nvidia/cuda:11.3.1-runtime-ubuntu20.04
7
+ ARG useProxyNetwork=''
8
+ RUN apt-get update
9
+ RUN apt-get install -y curl proxychains curl g++
10
+ RUN apt-get install -y git python python3 python-dev python3-dev --fix-missing
11
+
12
+ # 配置代理网络(构建Docker镜像时使用)
13
+ # # comment out below if you do not need proxy network | 如果不需要翻墙 - 从此行向下删除
14
+ RUN $useProxyNetwork curl cip.cc
15
+ RUN sed -i '$ d' /etc/proxychains.conf
16
+ RUN sed -i '$ d' /etc/proxychains.conf
17
+ # 在这里填写主机的代理协议(用于从github拉取代码)
18
+ RUN echo "socks5 127.0.0.1 10880" >> /etc/proxychains.conf
19
+ ARG useProxyNetwork=proxychains
20
+ # # comment out above if you do not need proxy network | 如果不需要翻墙 - 从此行向上删除
21
+
22
+
23
+ # use python3 as the system default python
24
+ RUN curl -sS https://bootstrap.pypa.io/get-pip.py | python3.8
25
+ # 下载pytorch
26
+ RUN $useProxyNetwork python3 -m pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
27
+ # 下载分支
28
+ WORKDIR /gpt
29
+ RUN $useProxyNetwork git clone https://github.com/binary-husky/chatgpt_academic.git -b jittor
30
+ WORKDIR /gpt/chatgpt_academic
31
+ RUN $useProxyNetwork python3 -m pip install -r requirements.txt
32
+ RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_chatglm.txt
33
+ RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_newbing.txt
34
+ RUN $useProxyNetwork python3 -m pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I
35
+
36
+ # 下载JittorLLMs
37
+ RUN $useProxyNetwork git clone https://github.com/binary-husky/JittorLLMs.git --depth 1 request_llm/jittorllms
38
+
39
+ # 禁用缓存,确保更新代码
40
+ ADD "https://www.random.org/cgi-bin/randbyte?nbytes=10&format=h" skipcache
41
+ RUN $useProxyNetwork git pull
42
+
43
+ # 预热Tiktoken模块
44
+ RUN python3 -c 'from check_proxy import warm_up_modules; warm_up_modules()'
45
+
46
+ # 为chatgpt-academic配置代理和API-KEY (非必要 可选步骤)
47
+ # 可同时填写多个API-KEY,支持openai的key和api2d的key共存,用英文逗号分割,例如API_KEY = "sk-openaikey1,fkxxxx-api2dkey2,........"
48
+ # LLM_MODEL 是选择初始的模型
49
+ # LOCAL_MODEL_DEVICE 是选择chatglm等本地模型运行的设备,可选 cpu 和 cuda
50
+ # [说明: 以下内容与`config.py`一一对应,请查阅config.py来完成一下配置的填写]
51
+ RUN echo ' \n\
52
+ API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx,fkxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" \n\
53
+ USE_PROXY = True \n\
54
+ LLM_MODEL = "chatglm" \n\
55
+ LOCAL_MODEL_DEVICE = "cuda" \n\
56
+ proxies = { "http": "socks5h://localhost:10880", "https": "socks5h://localhost:10880", } ' >> config_private.py
57
+
58
+ # 启动
59
+ CMD ["python3", "-u", "main.py"]
request_llm/bridge_all.py CHANGED
@@ -133,6 +133,51 @@ model_info = {
133
  }
134
 
135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  def LLM_CATCH_EXCEPTION(f):
137
  """
138
  装饰器函数,将错误显示出来
 
133
  }
134
 
135
 
136
+ AVAIL_LLM_MODELS, = get_conf("AVAIL_LLM_MODELS")
137
+ if "jittorllms_rwkv" in AVAIL_LLM_MODELS:
138
+ from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui
139
+ from .bridge_jittorllms_rwkv import predict as rwkv_ui
140
+ model_info.update({
141
+ "jittorllms_rwkv": {
142
+ "fn_with_ui": rwkv_ui,
143
+ "fn_without_ui": rwkv_noui,
144
+ "endpoint": None,
145
+ "max_token": 1024,
146
+ "tokenizer": tokenizer_gpt35,
147
+ "token_cnt": get_token_num_gpt35,
148
+ },
149
+ })
150
+ if "jittorllms_llama" in AVAIL_LLM_MODELS:
151
+ from .bridge_jittorllms_llama import predict_no_ui_long_connection as llama_noui
152
+ from .bridge_jittorllms_llama import predict as llama_ui
153
+ model_info.update({
154
+ "jittorllms_llama": {
155
+ "fn_with_ui": llama_ui,
156
+ "fn_without_ui": llama_noui,
157
+ "endpoint": None,
158
+ "max_token": 1024,
159
+ "tokenizer": tokenizer_gpt35,
160
+ "token_cnt": get_token_num_gpt35,
161
+ },
162
+ })
163
+ if "jittorllms_pangualpha" in AVAIL_LLM_MODELS:
164
+ from .bridge_jittorllms_pangualpha import predict_no_ui_long_connection as pangualpha_noui
165
+ from .bridge_jittorllms_pangualpha import predict as pangualpha_ui
166
+ model_info.update({
167
+ "jittorllms_pangualpha": {
168
+ "fn_with_ui": pangualpha_ui,
169
+ "fn_without_ui": pangualpha_noui,
170
+ "endpoint": None,
171
+ "max_token": 1024,
172
+ "tokenizer": tokenizer_gpt35,
173
+ "token_cnt": get_token_num_gpt35,
174
+ },
175
+ })
176
+
177
+
178
+
179
+
180
+
181
  def LLM_CATCH_EXCEPTION(f):
182
  """
183
  装饰器函数,将错误显示出来
request_llm/bridge_jittorllms_llama.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import AutoModel, AutoTokenizer
3
+ import time
4
+ import threading
5
+ import importlib
6
+ from toolbox import update_ui, get_conf
7
+ from multiprocessing import Process, Pipe
8
+
9
+ load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
10
+
11
+ #################################################################################
12
+ class GetGLMHandle(Process):
13
+ def __init__(self):
14
+ super().__init__(daemon=True)
15
+ self.parent, self.child = Pipe()
16
+ self.jittorllms_model = None
17
+ self.info = ""
18
+ self.local_history = []
19
+ self.success = True
20
+ self.check_dependency()
21
+ self.start()
22
+ self.threadLock = threading.Lock()
23
+
24
+ def check_dependency(self):
25
+ try:
26
+ import pandas
27
+ self.info = "依赖检测通过"
28
+ self.success = True
29
+ except:
30
+ from toolbox import trimmed_format_exc
31
+ self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
32
+ r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
33
+ r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
34
+ self.success = False
35
+
36
+ def ready(self):
37
+ return self.jittorllms_model is not None
38
+
39
+ def run(self):
40
+ # 子进程执行
41
+ # 第一次运行,加载参数
42
+ def validate_path():
43
+ import os, sys
44
+ dir_name = os.path.dirname(__file__)
45
+ env = os.environ.get("PATH", "")
46
+ os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
47
+ root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
48
+ os.chdir(root_dir_assume + '/request_llm/jittorllms')
49
+ sys.path.append(root_dir_assume + '/request_llm/jittorllms')
50
+ validate_path() # validate path so you can run from base directory
51
+
52
+ def load_model():
53
+ import types
54
+ try:
55
+ if self.jittorllms_model is None:
56
+ device, = get_conf('LOCAL_MODEL_DEVICE')
57
+ from .jittorllms.models import get_model
58
+ # availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
59
+ args_dict = {'model': 'llama'}
60
+ print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
61
+ self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
62
+ print('done get model')
63
+ except:
64
+ self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
65
+ raise RuntimeError("不能正常加载jittorllms的参数!")
66
+ print('load_model')
67
+ load_model()
68
+
69
+ # 进入任务等待状态
70
+ print('进入任务等待状态')
71
+ while True:
72
+ # 进入任务等待状态
73
+ kwargs = self.child.recv()
74
+ query = kwargs['query']
75
+ history = kwargs['history']
76
+ # 是否重置
77
+ if len(self.local_history) > 0 and len(history)==0:
78
+ print('触发重置')
79
+ self.jittorllms_model.reset()
80
+ self.local_history.append(query)
81
+
82
+ print('收到消息,开始请求')
83
+ try:
84
+ for response in self.jittorllms_model.stream_chat(query, history):
85
+ print(response)
86
+ self.child.send(response)
87
+ except:
88
+ from toolbox import trimmed_format_exc
89
+ print(trimmed_format_exc())
90
+ self.child.send('[Local Message] Call jittorllms fail.')
91
+ # 请求处理结束,开始下一个循环
92
+ self.child.send('[Finish]')
93
+
94
+ def stream_chat(self, **kwargs):
95
+ # 主进程执行
96
+ self.threadLock.acquire()
97
+ self.parent.send(kwargs)
98
+ while True:
99
+ res = self.parent.recv()
100
+ if res != '[Finish]':
101
+ yield res
102
+ else:
103
+ break
104
+ self.threadLock.release()
105
+
106
+ global llama_glm_handle
107
+ llama_glm_handle = None
108
+ #################################################################################
109
+ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
110
+ """
111
+ 多线程方法
112
+ 函数的说明请见 request_llm/bridge_all.py
113
+ """
114
+ global llama_glm_handle
115
+ if llama_glm_handle is None:
116
+ llama_glm_handle = GetGLMHandle()
117
+ if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + llama_glm_handle.info
118
+ if not llama_glm_handle.success:
119
+ error = llama_glm_handle.info
120
+ llama_glm_handle = None
121
+ raise RuntimeError(error)
122
+
123
+ # jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
124
+ history_feedin = []
125
+ for i in range(len(history)//2):
126
+ history_feedin.append([history[2*i], history[2*i+1]] )
127
+
128
+ watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
129
+ response = ""
130
+ for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
131
+ print(response)
132
+ if len(observe_window) >= 1: observe_window[0] = response
133
+ if len(observe_window) >= 2:
134
+ if (time.time()-observe_window[1]) > watch_dog_patience:
135
+ raise RuntimeError("程序终止。")
136
+ return response
137
+
138
+
139
+
140
+ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
141
+ """
142
+ 单线程方法
143
+ 函数的说明请见 request_llm/bridge_all.py
144
+ """
145
+ chatbot.append((inputs, ""))
146
+
147
+ global llama_glm_handle
148
+ if llama_glm_handle is None:
149
+ llama_glm_handle = GetGLMHandle()
150
+ chatbot[-1] = (inputs, load_message + "\n\n" + llama_glm_handle.info)
151
+ yield from update_ui(chatbot=chatbot, history=[])
152
+ if not llama_glm_handle.success:
153
+ llama_glm_handle = None
154
+ return
155
+
156
+ if additional_fn is not None:
157
+ import core_functional
158
+ importlib.reload(core_functional) # 热更新prompt
159
+ core_functional = core_functional.get_core_functions()
160
+ if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
161
+ inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
162
+
163
+ # 处理历史信息
164
+ history_feedin = []
165
+ for i in range(len(history)//2):
166
+ history_feedin.append([history[2*i], history[2*i+1]] )
167
+
168
+ # 开始接收jittorllms的回复
169
+ response = "[Local Message]: 等待jittorllms响应中 ..."
170
+ for response in llama_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
171
+ chatbot[-1] = (inputs, response)
172
+ yield from update_ui(chatbot=chatbot, history=history)
173
+
174
+ # 总结输出
175
+ if response == "[Local Message]: 等待jittorllms响应中 ...":
176
+ response = "[Local Message]: jittorllms响应异常 ..."
177
+ history.extend([inputs, response])
178
+ yield from update_ui(chatbot=chatbot, history=history)
request_llm/bridge_jittorllms_pangualpha.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import AutoModel, AutoTokenizer
3
+ import time
4
+ import threading
5
+ import importlib
6
+ from toolbox import update_ui, get_conf
7
+ from multiprocessing import Process, Pipe
8
+
9
+ load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
10
+
11
+ #################################################################################
12
+ class GetGLMHandle(Process):
13
+ def __init__(self):
14
+ super().__init__(daemon=True)
15
+ self.parent, self.child = Pipe()
16
+ self.jittorllms_model = None
17
+ self.info = ""
18
+ self.local_history = []
19
+ self.success = True
20
+ self.check_dependency()
21
+ self.start()
22
+ self.threadLock = threading.Lock()
23
+
24
+ def check_dependency(self):
25
+ try:
26
+ import pandas
27
+ self.info = "依赖检测通过"
28
+ self.success = True
29
+ except:
30
+ from toolbox import trimmed_format_exc
31
+ self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
32
+ r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
33
+ r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
34
+ self.success = False
35
+
36
+ def ready(self):
37
+ return self.jittorllms_model is not None
38
+
39
+ def run(self):
40
+ # 子进程执行
41
+ # 第一次运行,加载参数
42
+ def validate_path():
43
+ import os, sys
44
+ dir_name = os.path.dirname(__file__)
45
+ env = os.environ.get("PATH", "")
46
+ os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
47
+ root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
48
+ os.chdir(root_dir_assume + '/request_llm/jittorllms')
49
+ sys.path.append(root_dir_assume + '/request_llm/jittorllms')
50
+ validate_path() # validate path so you can run from base directory
51
+
52
+ def load_model():
53
+ import types
54
+ try:
55
+ if self.jittorllms_model is None:
56
+ device, = get_conf('LOCAL_MODEL_DEVICE')
57
+ from .jittorllms.models import get_model
58
+ # availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
59
+ args_dict = {'model': 'pangualpha'}
60
+ print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
61
+ self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
62
+ print('done get model')
63
+ except:
64
+ self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
65
+ raise RuntimeError("不能正常加载jittorllms的参数!")
66
+ print('load_model')
67
+ load_model()
68
+
69
+ # 进入任务等待状态
70
+ print('进入任务等待状态')
71
+ while True:
72
+ # 进入任务等待状态
73
+ kwargs = self.child.recv()
74
+ query = kwargs['query']
75
+ history = kwargs['history']
76
+ # 是否重置
77
+ if len(self.local_history) > 0 and len(history)==0:
78
+ print('触发重置')
79
+ self.jittorllms_model.reset()
80
+ self.local_history.append(query)
81
+
82
+ print('收到消息,开始请求')
83
+ try:
84
+ for response in self.jittorllms_model.stream_chat(query, history):
85
+ print(response)
86
+ self.child.send(response)
87
+ except:
88
+ from toolbox import trimmed_format_exc
89
+ print(trimmed_format_exc())
90
+ self.child.send('[Local Message] Call jittorllms fail.')
91
+ # 请求处理结束,开始下一个循环
92
+ self.child.send('[Finish]')
93
+
94
+ def stream_chat(self, **kwargs):
95
+ # 主进程执行
96
+ self.threadLock.acquire()
97
+ self.parent.send(kwargs)
98
+ while True:
99
+ res = self.parent.recv()
100
+ if res != '[Finish]':
101
+ yield res
102
+ else:
103
+ break
104
+ self.threadLock.release()
105
+
106
+ global pangu_glm_handle
107
+ pangu_glm_handle = None
108
+ #################################################################################
109
+ def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
110
+ """
111
+ 多线程方法
112
+ 函数的说明请见 request_llm/bridge_all.py
113
+ """
114
+ global pangu_glm_handle
115
+ if pangu_glm_handle is None:
116
+ pangu_glm_handle = GetGLMHandle()
117
+ if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + pangu_glm_handle.info
118
+ if not pangu_glm_handle.success:
119
+ error = pangu_glm_handle.info
120
+ pangu_glm_handle = None
121
+ raise RuntimeError(error)
122
+
123
+ # jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
124
+ history_feedin = []
125
+ for i in range(len(history)//2):
126
+ history_feedin.append([history[2*i], history[2*i+1]] )
127
+
128
+ watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
129
+ response = ""
130
+ for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
131
+ print(response)
132
+ if len(observe_window) >= 1: observe_window[0] = response
133
+ if len(observe_window) >= 2:
134
+ if (time.time()-observe_window[1]) > watch_dog_patience:
135
+ raise RuntimeError("程序终止。")
136
+ return response
137
+
138
+
139
+
140
+ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
141
+ """
142
+ 单线程方法
143
+ 函数的说明请见 request_llm/bridge_all.py
144
+ """
145
+ chatbot.append((inputs, ""))
146
+
147
+ global pangu_glm_handle
148
+ if pangu_glm_handle is None:
149
+ pangu_glm_handle = GetGLMHandle()
150
+ chatbot[-1] = (inputs, load_message + "\n\n" + pangu_glm_handle.info)
151
+ yield from update_ui(chatbot=chatbot, history=[])
152
+ if not pangu_glm_handle.success:
153
+ pangu_glm_handle = None
154
+ return
155
+
156
+ if additional_fn is not None:
157
+ import core_functional
158
+ importlib.reload(core_functional) # 热更新prompt
159
+ core_functional = core_functional.get_core_functions()
160
+ if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
161
+ inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
162
+
163
+ # 处理历史信息
164
+ history_feedin = []
165
+ for i in range(len(history)//2):
166
+ history_feedin.append([history[2*i], history[2*i+1]] )
167
+
168
+ # 开始接收jittorllms的回复
169
+ response = "[Local Message]: 等待jittorllms响应中 ..."
170
+ for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
171
+ chatbot[-1] = (inputs, response)
172
+ yield from update_ui(chatbot=chatbot, history=history)
173
+
174
+ # 总结输出
175
+ if response == "[Local Message]: 等待jittorllms响应中 ...":
176
+ response = "[Local Message]: jittorllms响应异常 ..."
177
+ history.extend([inputs, response])
178
+ yield from update_ui(chatbot=chatbot, history=history)
request_llm/{bridge_jittorllms.py → bridge_jittorllms_rwkv.py} RENAMED
@@ -6,7 +6,7 @@ import importlib
6
  from toolbox import update_ui, get_conf
7
  from multiprocessing import Process, Pipe
8
 
9
- load_message = "jittorllms尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
10
 
11
  #################################################################################
12
  class GetGLMHandle(Process):
@@ -15,6 +15,7 @@ class GetGLMHandle(Process):
15
  self.parent, self.child = Pipe()
16
  self.jittorllms_model = None
17
  self.info = ""
 
18
  self.success = True
19
  self.check_dependency()
20
  self.start()
@@ -22,13 +23,14 @@ class GetGLMHandle(Process):
22
 
23
  def check_dependency(self):
24
  try:
25
- import jittor
26
- from .jittorllms.models import get_model
27
  self.info = "依赖检测通过"
28
  self.success = True
29
  except:
30
- self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt`"+\
31
- r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。"
 
 
32
  self.success = False
33
 
34
  def ready(self):
@@ -37,6 +39,16 @@ class GetGLMHandle(Process):
37
  def run(self):
38
  # 子进程执行
39
  # 第一次运行,加载参数
 
 
 
 
 
 
 
 
 
 
40
  def load_model():
41
  import types
42
  try:
@@ -44,23 +56,37 @@ class GetGLMHandle(Process):
44
  device, = get_conf('LOCAL_MODEL_DEVICE')
45
  from .jittorllms.models import get_model
46
  # availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
47
- args_dict = {'model': 'chatglm', 'RUN_DEVICE':'cpu'}
 
48
  self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
 
49
  except:
50
  self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
51
  raise RuntimeError("不能正常加载jittorllms的参数!")
52
-
53
  load_model()
54
 
55
  # 进入任务等待状态
 
56
  while True:
57
  # 进入任务等待状态
58
  kwargs = self.child.recv()
59
- # 收到消息,开始请求
 
 
 
 
 
 
 
 
60
  try:
61
- for response, history in self.jittorllms_model.run_web_demo(kwargs['query'], kwargs['history']):
 
62
  self.child.send(response)
63
  except:
 
 
64
  self.child.send('[Local Message] Call jittorllms fail.')
65
  # 请求处理结束,开始下一个循环
66
  self.child.send('[Finish]')
@@ -77,32 +103,32 @@ class GetGLMHandle(Process):
77
  break
78
  self.threadLock.release()
79
 
80
- global glm_handle
81
- glm_handle = None
82
  #################################################################################
83
  def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
84
  """
85
  多线程方法
86
  函数的说明请见 request_llm/bridge_all.py
87
  """
88
- global glm_handle
89
- if glm_handle is None:
90
- glm_handle = GetGLMHandle()
91
- if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glm_handle.info
92
- if not glm_handle.success:
93
- error = glm_handle.info
94
- glm_handle = None
95
  raise RuntimeError(error)
96
 
97
  # jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
98
  history_feedin = []
99
- history_feedin.append(["What can I do?", sys_prompt])
100
  for i in range(len(history)//2):
101
  history_feedin.append([history[2*i], history[2*i+1]] )
102
 
103
  watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
104
  response = ""
105
- for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
 
106
  if len(observe_window) >= 1: observe_window[0] = response
107
  if len(observe_window) >= 2:
108
  if (time.time()-observe_window[1]) > watch_dog_patience:
@@ -118,13 +144,13 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
118
  """
119
  chatbot.append((inputs, ""))
120
 
121
- global glm_handle
122
- if glm_handle is None:
123
- glm_handle = GetGLMHandle()
124
- chatbot[-1] = (inputs, load_message + "\n\n" + glm_handle.info)
125
  yield from update_ui(chatbot=chatbot, history=[])
126
- if not glm_handle.success:
127
- glm_handle = None
128
  return
129
 
130
  if additional_fn is not None:
@@ -136,13 +162,12 @@ def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_promp
136
 
137
  # 处理历史信息
138
  history_feedin = []
139
- history_feedin.append(["What can I do?", system_prompt] )
140
  for i in range(len(history)//2):
141
  history_feedin.append([history[2*i], history[2*i+1]] )
142
 
143
  # 开始接收jittorllms的回复
144
  response = "[Local Message]: 等待jittorllms响应中 ..."
145
- for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
146
  chatbot[-1] = (inputs, response)
147
  yield from update_ui(chatbot=chatbot, history=history)
148
 
 
6
  from toolbox import update_ui, get_conf
7
  from multiprocessing import Process, Pipe
8
 
9
+ load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
10
 
11
  #################################################################################
12
  class GetGLMHandle(Process):
 
15
  self.parent, self.child = Pipe()
16
  self.jittorllms_model = None
17
  self.info = ""
18
+ self.local_history = []
19
  self.success = True
20
  self.check_dependency()
21
  self.start()
 
23
 
24
  def check_dependency(self):
25
  try:
26
+ import pandas
 
27
  self.info = "依赖检测通过"
28
  self.success = True
29
  except:
30
+ from toolbox import trimmed_format_exc
31
+ self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llm/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
32
+ r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llm/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
33
+ r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
34
  self.success = False
35
 
36
  def ready(self):
 
39
  def run(self):
40
  # 子进程执行
41
  # 第一次运行,加载参数
42
+ def validate_path():
43
+ import os, sys
44
+ dir_name = os.path.dirname(__file__)
45
+ env = os.environ.get("PATH", "")
46
+ os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
47
+ root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
48
+ os.chdir(root_dir_assume + '/request_llm/jittorllms')
49
+ sys.path.append(root_dir_assume + '/request_llm/jittorllms')
50
+ validate_path() # validate path so you can run from base directory
51
+
52
  def load_model():
53
  import types
54
  try:
 
56
  device, = get_conf('LOCAL_MODEL_DEVICE')
57
  from .jittorllms.models import get_model
58
  # availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
59
+ args_dict = {'model': 'chatrwkv'}
60
+ print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
61
  self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
62
+ print('done get model')
63
  except:
64
  self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
65
  raise RuntimeError("不能正常加载jittorllms的参数!")
66
+ print('load_model')
67
  load_model()
68
 
69
  # 进入任务等待状态
70
+ print('进入任务等待状态')
71
  while True:
72
  # 进入任务等待状态
73
  kwargs = self.child.recv()
74
+ query = kwargs['query']
75
+ history = kwargs['history']
76
+ # 是否重置
77
+ if len(self.local_history) > 0 and len(history)==0:
78
+ print('触发重置')
79
+ self.jittorllms_model.reset()
80
+ self.local_history.append(query)
81
+
82
+ print('收到消息,开始请求')
83
  try:
84
+ for response in self.jittorllms_model.stream_chat(query, history):
85
+ print(response)
86
  self.child.send(response)
87
  except:
88
+ from toolbox import trimmed_format_exc
89
+ print(trimmed_format_exc())
90
  self.child.send('[Local Message] Call jittorllms fail.')
91
  # 请求处理结束,开始下一个循环
92
  self.child.send('[Finish]')
 
103
  break
104
  self.threadLock.release()
105
 
106
+ global rwkv_glm_handle
107
+ rwkv_glm_handle = None
108
  #################################################################################
109
  def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
110
  """
111
  多线程方法
112
  函数的说明请见 request_llm/bridge_all.py
113
  """
114
+ global rwkv_glm_handle
115
+ if rwkv_glm_handle is None:
116
+ rwkv_glm_handle = GetGLMHandle()
117
+ if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + rwkv_glm_handle.info
118
+ if not rwkv_glm_handle.success:
119
+ error = rwkv_glm_handle.info
120
+ rwkv_glm_handle = None
121
  raise RuntimeError(error)
122
 
123
  # jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
124
  history_feedin = []
 
125
  for i in range(len(history)//2):
126
  history_feedin.append([history[2*i], history[2*i+1]] )
127
 
128
  watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
129
  response = ""
130
+ for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
131
+ print(response)
132
  if len(observe_window) >= 1: observe_window[0] = response
133
  if len(observe_window) >= 2:
134
  if (time.time()-observe_window[1]) > watch_dog_patience:
 
144
  """
145
  chatbot.append((inputs, ""))
146
 
147
+ global rwkv_glm_handle
148
+ if rwkv_glm_handle is None:
149
+ rwkv_glm_handle = GetGLMHandle()
150
+ chatbot[-1] = (inputs, load_message + "\n\n" + rwkv_glm_handle.info)
151
  yield from update_ui(chatbot=chatbot, history=[])
152
+ if not rwkv_glm_handle.success:
153
+ rwkv_glm_handle = None
154
  return
155
 
156
  if additional_fn is not None:
 
162
 
163
  # 处理历史信息
164
  history_feedin = []
 
165
  for i in range(len(history)//2):
166
  history_feedin.append([history[2*i], history[2*i+1]] )
167
 
168
  # 开始接收jittorllms的回复
169
  response = "[Local Message]: 等待jittorllms响应中 ..."
170
+ for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
171
  chatbot[-1] = (inputs, response)
172
  yield from update_ui(chatbot=chatbot, history=history)
173
 
request_llm/requirements_jittorllms.txt CHANGED
@@ -1,4 +1,7 @@
1
  jittor >= 1.3.7.9
2
  jtorch >= 0.1.3
3
  torch
4
- torchvision
 
 
 
 
1
  jittor >= 1.3.7.9
2
  jtorch >= 0.1.3
3
  torch
4
+ torchvision
5
+ transformers==4.26.1
6
+ pandas
7
+ jieba
request_llm/test_llms.py CHANGED
@@ -1,6 +1,6 @@
1
- """
2
- 对各个llm模型进行单元测试
3
- """
4
  def validate_path():
5
  import os, sys
6
  dir_name = os.path.dirname(__file__)
@@ -10,7 +10,9 @@ def validate_path():
10
 
11
  validate_path() # validate path so you can run from base directory
12
 
13
- from request_llm.bridge_jittorllms import predict_no_ui_long_connection
 
 
14
 
15
  llm_kwargs = {
16
  'max_length': 512,
@@ -22,5 +24,54 @@ result = predict_no_ui_long_connection(inputs="你好",
22
  llm_kwargs=llm_kwargs,
23
  history=[],
24
  sys_prompt="")
 
25
 
26
- print('result')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # """
2
+ # 对各个llm模型进行单元测试
3
+ # """
4
  def validate_path():
5
  import os, sys
6
  dir_name = os.path.dirname(__file__)
 
10
 
11
  validate_path() # validate path so you can run from base directory
12
 
13
+ from request_llm.bridge_jittorllms_rwkv import predict_no_ui_long_connection
14
+ # from request_llm.bridge_jittorllms_pangualpha import predict_no_ui_long_connection
15
+ # from request_llm.bridge_jittorllms_llama import predict_no_ui_long_connection
16
 
17
  llm_kwargs = {
18
  'max_length': 512,
 
24
  llm_kwargs=llm_kwargs,
25
  history=[],
26
  sys_prompt="")
27
+ print('final result:', result)
28
 
29
+
30
+ result = predict_no_ui_long_connection(inputs="what is a hero?",
31
+ llm_kwargs=llm_kwargs,
32
+ history=["hello world"],
33
+ sys_prompt="")
34
+ print('final result:', result)
35
+
36
+ result = predict_no_ui_long_connection(inputs="如何理解传奇?",
37
+ llm_kwargs=llm_kwargs,
38
+ history=[],
39
+ sys_prompt="")
40
+ print('final result:', result)
41
+
42
+ # # print(result)
43
+ # from multiprocessing import Process, Pipe
44
+ # class GetGLMHandle(Process):
45
+ # def __init__(self):
46
+ # super().__init__(daemon=True)
47
+ # pass
48
+ # def run(self):
49
+ # # 子进程执行
50
+ # # 第一次运行,加载参数
51
+ # def validate_path():
52
+ # import os, sys
53
+ # dir_name = os.path.dirname(__file__)
54
+ # root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
55
+ # os.chdir(root_dir_assume + '/request_llm/jittorllms')
56
+ # sys.path.append(root_dir_assume + '/request_llm/jittorllms')
57
+ # validate_path() # validate path so you can run from base directory
58
+
59
+ # jittorllms_model = None
60
+ # import types
61
+ # try:
62
+ # if jittorllms_model is None:
63
+ # from models import get_model
64
+ # # availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
65
+ # args_dict = {'model': 'chatrwkv'}
66
+ # print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
67
+ # jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
68
+ # print('done get model')
69
+ # except:
70
+ # # self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
71
+ # raise RuntimeError("不能正常加载jittorllms的参数!")
72
+
73
+ # x = GetGLMHandle()
74
+ # x.start()
75
+
76
+
77
+ # input()