qingxu99 commited on
Commit
e8cf757
·
1 Parent(s): 06f8094

修复完成后的文件显示问题

Browse files
crazy_functions/crazy_utils.py CHANGED
@@ -1,6 +1,79 @@
1
 
2
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
5
  def cut(txt_tocut, must_break_at_empty_line): # 递归
6
  if get_token_fn(txt_tocut) <= limit:
 
1
 
2
 
3
 
4
+ def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
5
+ import time
6
+ from concurrent.futures import ThreadPoolExecutor
7
+ from request_llm.bridge_chatgpt import predict_no_ui_long_connection
8
+ # 用户反馈
9
+ chatbot.append([inputs_show_user, ""]); msg = '正常'
10
+ yield chatbot, [], msg
11
+ executor = ThreadPoolExecutor(max_workers=16)
12
+ mutable = ["", time.time()]
13
+ future = executor.submit(lambda:
14
+ predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
15
+ )
16
+ while True:
17
+ # yield一次以刷新前端页面
18
+ time.sleep(refresh_interval)
19
+ # “喂狗”(看门狗)
20
+ mutable[1] = time.time()
21
+ if future.done(): break
22
+ chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
23
+ yield chatbot, [], msg
24
+ return future.result()
25
+
26
+
27
+
28
+
29
+ def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
30
+ import time
31
+ from concurrent.futures import ThreadPoolExecutor
32
+ from request_llm.bridge_chatgpt import predict_no_ui_long_connection
33
+ assert len(inputs_array) == len(history_array)
34
+ assert len(inputs_array) == len(sys_prompt_array)
35
+ executor = ThreadPoolExecutor(max_workers=max_workers)
36
+ n_frag = len(inputs_array)
37
+ # 用户反馈
38
+ chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
39
+ yield chatbot, [], msg
40
+ # 异步原子
41
+ mutable = [["", time.time()] for _ in range(n_frag)]
42
+ def _req_gpt(index, inputs, history, sys_prompt):
43
+ gpt_say = predict_no_ui_long_connection(
44
+ inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
45
+ )
46
+ return gpt_say
47
+ # 异步任务开始
48
+ futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
49
+ cnt = 0
50
+ while True:
51
+ # yield一次以刷新前端页面
52
+ time.sleep(refresh_interval); cnt += 1
53
+ worker_done = [h.done() for h in futures]
54
+ if all(worker_done): executor.shutdown(); break
55
+ # 更好的UI视觉效果
56
+ observe_win = []
57
+ # 每个线程都要“喂狗”(看门狗)
58
+ for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
59
+ # 在前端打印些好玩的东西
60
+ for thread_index, _ in enumerate(worker_done):
61
+ print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
62
+ replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
63
+ observe_win.append(print_something_really_funny)
64
+ stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
65
+ chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
66
+ yield chatbot, [], msg
67
+ # 异步任务结束
68
+ gpt_response_collection = []
69
+ for inputs_show_user, f in zip(inputs_show_user_array, futures):
70
+ gpt_res = f.result()
71
+ gpt_response_collection.extend([inputs_show_user, gpt_res])
72
+ return gpt_response_collection
73
+
74
+
75
+
76
+
77
  def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
78
  def cut(txt_tocut, must_break_at_empty_line): # 递归
79
  if get_token_fn(txt_tocut) <= limit:
crazy_functions/批量翻译PDF文档_多线程.py CHANGED
@@ -1,66 +1,25 @@
1
- from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
2
- import re
3
- import unicodedata
4
 
5
-
6
- def is_paragraph_break(match):
7
- """
8
- 根据给定的匹配结果来判断换行符是否表示段落分隔。
9
- 如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。
10
- 也可以根据之前的内容长度来判断段落是否已经足够长。
11
- """
12
- prev_char, next_char = match.groups()
13
-
14
- # 句子结束标志
15
- sentence_endings = ".!?"
16
-
17
- # 设定一个最小段落长度阈值
18
- min_paragraph_length = 140
19
-
20
- if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length:
21
- return "\n\n"
22
- else:
23
- return " "
24
-
25
-
26
- def normalize_text(text):
27
- """
28
- 通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。
29
- 例如,将连字 "fi" 转换为 "f" 和 "i"。
30
- """
31
- # 对文本进行归一化处理,分解连字
32
- normalized_text = unicodedata.normalize("NFKD", text)
33
-
34
- # 替换其他特殊字符
35
- cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
36
-
37
- return cleaned_text
38
-
39
-
40
- def clean_text(raw_text):
41
  """
42
- 对从 PDF 提取出的原始文本进行清洗和格式化处理。
43
- 1. 对原始文本进行归一化处理。
44
- 2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。
45
- 3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。
 
 
 
 
 
 
 
 
 
 
 
46
  """
47
- # 对文本进行归一化处理
48
- normalized_text = normalize_text(raw_text)
49
-
50
- # 替换跨行的连词
51
- text = re.sub(r'(\w+-\n\w+)',
52
- lambda m: m.group(1).replace('-\n', ''), normalized_text)
53
-
54
- # 根据前后相邻字符的特点,找到原文本中的换行符
55
- newlines = re.compile(r'(\S)\n(\S)')
56
-
57
- # 根据 heuristic 规则,用空格或段落分隔符替换原换行符
58
- final_text = re.sub(newlines, lambda m: m.group(
59
- 1) + is_paragraph_break(m) + m.group(2), text)
60
-
61
- return final_text.strip()
62
-
63
- def read_and_clean_pdf_text(fp):
64
  import fitz, re
65
  import numpy as np
66
  # file_content = ""
@@ -170,69 +129,7 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt,
170
  yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
171
 
172
 
173
- def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
174
- import time
175
- from concurrent.futures import ThreadPoolExecutor
176
- from request_llm.bridge_chatgpt import predict_no_ui_long_connection
177
- # 用户反馈
178
- chatbot.append([inputs_show_user, ""]); msg = '正常'
179
- yield chatbot, [], msg
180
- executor = ThreadPoolExecutor(max_workers=16)
181
- mutable = ["", time.time()]
182
- future = executor.submit(lambda:
183
- predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
184
- )
185
- while True:
186
- # yield一次以刷新前端页面
187
- time.sleep(refresh_interval)
188
- # “喂狗”(看门狗)
189
- mutable[1] = time.time()
190
- if future.done(): break
191
- chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
192
- yield chatbot, [], msg
193
- return future.result()
194
 
195
- def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
196
- import time
197
- from concurrent.futures import ThreadPoolExecutor
198
- from request_llm.bridge_chatgpt import predict_no_ui_long_connection
199
- assert len(inputs_array) == len(history_array)
200
- assert len(inputs_array) == len(sys_prompt_array)
201
- executor = ThreadPoolExecutor(max_workers=max_workers)
202
- n_frag = len(inputs_array)
203
- # 异步原子
204
- mutable = [["", time.time()] for _ in range(n_frag)]
205
- def _req_gpt(index, inputs, history, sys_prompt):
206
- gpt_say = predict_no_ui_long_connection(
207
- inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
208
- )
209
- return gpt_say
210
- # 异步任务开始
211
- futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
212
- cnt = 0
213
- while True:
214
- # yield一次以刷新前端页面
215
- time.sleep(refresh_interval); cnt += 1
216
- worker_done = [h.done() for h in futures]
217
- if all(worker_done): executor.shutdown(); break
218
- # 更好的UI视觉效果
219
- observe_win = []
220
- # 每个线程都要“喂狗”(看门狗)
221
- for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
222
- # 在前端打印些好玩的东西
223
- for thread_index, _ in enumerate(worker_done):
224
- print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
225
- replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
226
- observe_win.append(print_something_really_funny)
227
- stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
228
- chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
229
- yield chatbot, [], msg
230
- # 异步任务结束
231
- gpt_response_collection = []
232
- for inputs_show_user, f in zip(inputs_show_user_array, futures):
233
- gpt_res = f.result()
234
- gpt_response_collection.extend([inputs_show_user, gpt_res])
235
- return gpt_response_collection
236
 
237
  def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
238
  import time
@@ -241,7 +138,7 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
241
  import fitz
242
  import tiktoken
243
  TOKEN_LIMIT_PER_FRAGMENT = 1600
244
-
245
  for index, fp in enumerate(file_manifest):
246
  # 读取PDF文件
247
  file_content, page_one = read_and_clean_pdf_text(fp)
@@ -277,7 +174,19 @@ def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, histor
277
 
278
  final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
279
  final.extend(gpt_response_collection)
280
- res = write_results_to_file(final)
 
 
281
  chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
282
  yield chatbot, history, msg
283
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from toolbox import CatchException, report_execption, write_results_to_file
2
+ from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
3
+ from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
4
 
5
+ def read_and_clean_pdf_text(fp):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  """
7
+ **输入参数说明**
8
+ - `fp`:需要读取和清理文本的pdf文件路径
9
+
10
+ **输出参数说明**
11
+ - `meta_txt`:清理后的文本内容字符串
12
+ - `page_one_meta`:第一页清理后的文本内容列表
13
+
14
+ **函数功能**
15
+ 读取pdf文件并清理其中的文本内容,清理规则包括:
16
+ - 提取所有块元的文本信息,并合并为一个字符串
17
+ - 去除短块(字符数小于100)并替换为回车符
18
+ - 清理多余的空行
19
+ - 合并小写字母开头的段落块并替换为空格
20
+ - 清除重复的换行
21
+ - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
22
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  import fitz, re
24
  import numpy as np
25
  # file_content = ""
 
129
  yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
130
 
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
135
  import time
 
138
  import fitz
139
  import tiktoken
140
  TOKEN_LIMIT_PER_FRAGMENT = 1600
141
+ generated_conclusion_files = []
142
  for index, fp in enumerate(file_manifest):
143
  # 读取PDF文件
144
  file_content, page_one = read_and_clean_pdf_text(fp)
 
174
 
175
  final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
176
  final.extend(gpt_response_collection)
177
+ create_report_file_name = f"{os.path.basename(fp)}.trans.md"
178
+ res = write_results_to_file(final, file_name=create_report_file_name)
179
+ generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
180
  chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
181
  yield chatbot, history, msg
182
 
183
+ # 准备文件的下载
184
+ import shutil
185
+ for pdf_path in generated_conclusion_files:
186
+ # 重命名文件
187
+ rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
188
+ if os.path.exists(rename_file): os.remove(rename_file)
189
+ shutil.copyfile(pdf_path, rename_file);
190
+ if os.path.exists(pdf_path): os.remove(pdf_path)
191
+ chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
192
+ yield chatbot, history, msg