Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,73 @@
|
|
1 |
-
|
2 |
-
import
|
|
|
|
|
3 |
import torch
|
4 |
-
|
5 |
-
from torchvision.transforms.functional import InterpolationMode
|
6 |
|
7 |
-
|
|
|
8 |
|
|
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
# from models.blip import blip_decoder
|
16 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
|
23 |
-
image_size =
|
24 |
-
|
25 |
-
|
26 |
-
transforms.ToTensor(),
|
27 |
-
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
28 |
-
])
|
29 |
|
30 |
-
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
|
31 |
-
|
32 |
-
# model = blip_decoder(pretrained=model_url, image_size=384, vit='large')
|
33 |
model.eval()
|
34 |
model = model.to(device)
|
35 |
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
# image_size_vq = 480
|
40 |
-
# transform_vq = transforms.Compose([
|
41 |
-
# transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC),
|
42 |
-
# transforms.ToTensor(),
|
43 |
-
# transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
44 |
-
# ])
|
45 |
-
|
46 |
-
# model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth'
|
47 |
-
|
48 |
-
# model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base')
|
49 |
-
# model_vq.eval()
|
50 |
-
# model_vq = model_vq.to(device)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
def inference(raw_image, model_n, question, strategy):
|
55 |
if model_n == 'Image Captioning':
|
|
|
56 |
image = transform(raw_image).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
with torch.no_grad():
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
else:
|
65 |
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
|
@@ -67,16 +75,26 @@ def inference(raw_image, model_n, question, strategy):
|
|
67 |
answer = model_vq(image_vq, question, train=False, inference='generate')
|
68 |
return 'answer: '+answer[0]
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
|
75 |
-
title = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
78 |
|
79 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
|
80 |
|
81 |
|
82 |
-
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['starrynight.jpeg',"Image Captioning","None","Nucleus sampling"]]).launch(enable_queue=True)
|
|
|
1 |
+
import ruamel_yaml as yaml
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
|
5 |
import torch
|
6 |
+
import torchvision.transforms as transforms
|
|
|
7 |
|
8 |
+
from PIL import Image
|
9 |
+
from models.tag2text import tag2text_caption
|
10 |
|
11 |
+
import gradio as gr
|
12 |
|
13 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
|
15 |
+
image_size = 384
|
16 |
|
17 |
|
18 |
+
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
19 |
+
std=[0.229, 0.224, 0.225])
|
20 |
+
transform = transforms.Compose([transforms.Resize((image_size, image_size)),transforms.ToTensor(),normalize])
|
21 |
|
|
|
|
|
22 |
|
23 |
+
#######Swin Version
|
24 |
+
pretrained = '/home/notebook/code/personal/S9049611/BLIP/output/blip_tagtotext_14m/blip_tagtotext_encoderdiv_tar_random_swin/caption_coco_finetune_tagparse_tagfinetune_threshold075_bceloss_tagsingle_5e6_epoch19_negative_1_05_pos_1_10/checkpoint_05.pth'
|
25 |
|
26 |
+
config_file = 'configs/tag2text_caption.yaml'
|
27 |
+
config = yaml.load(open(config_file, 'r'), Loader=yaml.Loader)
|
28 |
|
29 |
|
30 |
+
model = tag2text_caption(pretrained=pretrained, image_size=image_size, vit=config['vit'],
|
31 |
+
vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'],
|
32 |
+
prompt=config['prompt'],config=config,threshold = 0.75 )
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
34 |
model.eval()
|
35 |
model = model.to(device)
|
36 |
|
37 |
|
38 |
+
def inference(raw_image, model_n, input_tag, strategy):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
if model_n == 'Image Captioning':
|
40 |
+
raw_image = raw_image.resize((image_size, image_size))
|
41 |
image = transform(raw_image).unsqueeze(0).to(device)
|
42 |
+
model.threshold = 0.7
|
43 |
+
if input_tag == '' or input_tag == 'none' or input_tag == 'None':
|
44 |
+
input_tag_list = None
|
45 |
+
else:
|
46 |
+
input_tag_list = []
|
47 |
+
input_tag_list.append(input_tag.replace(',',' | '))
|
48 |
with torch.no_grad():
|
49 |
+
if strategy == "Beam search":
|
50 |
+
|
51 |
+
|
52 |
+
caption, tag_predict = model.generate(image,tag_input = input_tag_list, return_tag_predict = True)
|
53 |
+
if input_tag_list == None:
|
54 |
+
tag_1 = tag_predict
|
55 |
+
tag_2 = ['none']
|
56 |
+
else:
|
57 |
+
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
|
58 |
+
tag_2 = tag_predict
|
59 |
+
|
60 |
+
else:
|
61 |
+
|
62 |
+
caption,tag_predict = model.generate(image, tag_input = input_tag_list,sample=True, top_p=0.9, max_length=20, min_length=5, return_tag_predict = True)
|
63 |
+
if input_tag_list == None:
|
64 |
+
tag_1 = tag_predict
|
65 |
+
tag_2 = ['none']
|
66 |
+
else:
|
67 |
+
_, tag_1 = model.generate(image,tag_input = None, return_tag_predict = True)
|
68 |
+
tag_2 = tag_predict
|
69 |
+
return tag_1[0],tag_2[0],caption[0]
|
70 |
+
|
71 |
|
72 |
else:
|
73 |
image_vq = transform_vq(raw_image).unsqueeze(0).to(device)
|
|
|
75 |
answer = model_vq(image_vq, question, train=False, inference='generate')
|
76 |
return 'answer: '+answer[0]
|
77 |
|
78 |
+
inputs = [gr.inputs.Image(type='pil'),gr.inputs.Radio(choices=['Image Captioning'], type="value", default="Image Captioning", label="Task"),gr.inputs.Textbox(lines=2, label="User Identified Tags (Optional, Enter with commas)"),gr.inputs.Radio(choices=['Beam search','Nucleus sampling'], type="value", default="Beam search", label="Caption Decoding Strategy")]
|
79 |
+
|
80 |
+
outputs = [gr.outputs.Textbox(label="Model Identified Tags"),gr.outputs.Textbox(label="User Identified Tags"), gr.outputs.Textbox(label="Image Caption") ]
|
81 |
+
|
82 |
+
title = "Tag2Text"
|
83 |
+
|
84 |
+
description = "Gradio demo for Tag2Text: Guiding Language-Image Model via Image Tagging (Fudan University, OPPO Research Institute, International Digital Economy Academy)."
|
85 |
|
86 |
+
article = "<p style='text-align: center'><a href='' target='_blank'>Tag2Text: Guiding Language-Image Model via Image Tagging</a> | <a href='' target='_blank'>Github Repo</a></p>"
|
87 |
|
88 |
+
demo = gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=[['images/COCO_val2014_000000551338.jpg',"Image Captioning","none","Beam search"],
|
89 |
+
['images/COCO_val2014_000000551338.jpg',"Image Captioning","fence, sky","Beam search"],
|
90 |
+
# ['images/COCO_val2014_000000551338.jpg',"Image Captioning","grass","Beam search"],
|
91 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","none","Beam search"],
|
92 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","electric cable","Beam search"],
|
93 |
+
# ['images/COCO_val2014_000000483108.jpg',"Image Captioning","sky, train","Beam search"],
|
94 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","track, train","Beam search"] ,
|
95 |
+
['images/COCO_val2014_000000483108.jpg',"Image Captioning","grass","Beam search"]
|
96 |
+
])
|
97 |
|
|
|
98 |
|
|
|
99 |
|
100 |
|
|