Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,26 @@
|
|
1 |
-
# let's import the libraries
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
4 |
import spacy
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
from datasets import load_dataset
|
7 |
import io
|
8 |
import netrc
|
9 |
-
import pickle
|
10 |
-
import sys
|
11 |
-
import pandas as pd
|
12 |
-
import numpy as np
|
13 |
-
import streamlit as st
|
14 |
-
import torch
|
15 |
from tqdm import tqdm
|
16 |
tqdm.pandas()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
stsb_dataset = load_dataset('stsb_multi_mt', 'en')
|
20 |
stsb_train = pd.DataFrame(stsb_dataset['train'])
|
21 |
stsb_test = pd.DataFrame(stsb_dataset['test'])
|
@@ -23,19 +28,16 @@ stsb_test = pd.DataFrame(stsb_dataset['test'])
|
|
23 |
# let's create helper functions
|
24 |
nlp = spacy.load("en_core_web_sm")
|
25 |
|
26 |
-
|
27 |
def text_processing(sentence):
|
28 |
sentence = [token.lemma_.lower()
|
29 |
for token in nlp(sentence)
|
30 |
if token.is_alpha and not token.is_stop]
|
31 |
return sentence
|
32 |
|
33 |
-
|
34 |
def cos_sim(sentence1_emb, sentence2_emb):
|
35 |
cos_sim = cosine_similarity(sentence1_emb, sentence2_emb)
|
36 |
return np.diag(cos_sim)
|
37 |
|
38 |
-
|
39 |
# let's read the csv file
|
40 |
data = (pd.read_csv("SBERT_data.csv")).drop(['Unnamed: 0'], axis=1)
|
41 |
|
@@ -46,61 +48,35 @@ data.rename(columns={'target_text': 'sentence2',
|
|
46 |
data['sentence2'] = data['sentence2'].astype('str')
|
47 |
data['sentence1'] = data['sentence1'].astype('str')
|
48 |
|
|
|
49 |
XpathFinder = CrossEncoder("cross-encoder/stsb-roberta-base")
|
50 |
sentence_pairs = []
|
51 |
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
52 |
-
|
53 |
|
54 |
data['SBERT CrossEncoder_Score'] = XpathFinder.predict(
|
55 |
-
|
56 |
-
|
57 |
-
# sorting the values
|
58 |
-
data.sort_values(by=['SBERT CrossEncoder_Score'], ascending=False)
|
59 |
|
60 |
loaded_model = XpathFinder
|
61 |
|
62 |
-
#
|
63 |
header_container = st.container()
|
64 |
mod_container = st.container()
|
65 |
|
66 |
-
#
|
67 |
with header_container:
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
st.title("Xpath Finder App")
|
71 |
-
|
72 |
-
|
73 |
-
# model container
|
74 |
with mod_container:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
'prompt': 'sentence1'}, inplace=True)
|
86 |
-
data['sentence2'] = data['sentence2'].astype('str')
|
87 |
-
data['sentence1'] = data['sentence1'].astype('str')
|
88 |
-
|
89 |
-
# let's pass the input to the loaded_model with torch compiled with cuda
|
90 |
-
if prompt:
|
91 |
-
# let's get the result
|
92 |
-
simscore = loaded_model.predict([prompt])
|
93 |
-
|
94 |
-
from sentence_transformers import CrossEncoder
|
95 |
-
loaded_model = CrossEncoder("cross-encoder/stsb-roberta-base")
|
96 |
-
sentence_pairs = []
|
97 |
-
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
98 |
-
sentence_pairs.append([sentence1, sentence2])
|
99 |
-
|
100 |
-
# sorting the df to get highest scoring xpath_container
|
101 |
-
data['SBERT CrossEncoder_Score'] = loaded_model.predict(sentence_pairs)
|
102 |
-
most_acc = data.head(5)
|
103 |
-
# predictions
|
104 |
-
st.write("Highest Similarity score: ", simscore)
|
105 |
-
st.text("Is this one of these the Xpath you're looking for?")
|
106 |
-
st.write(st.write(most_acc["input_text"]))
|
|
|
1 |
+
# let's import the libraries
|
2 |
+
from email import header
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import pickle
|
7 |
import spacy
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
from datasets import load_dataset
|
10 |
import io
|
11 |
import netrc
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from tqdm import tqdm
|
13 |
tqdm.pandas()
|
14 |
+
import torch
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
import time
|
18 |
+
import sentence_transformers
|
19 |
+
from sentence_transformers import SentenceTransformer
|
20 |
+
from sentence_transformers import CrossEncoder
|
21 |
+
from sentence_transformers import util
|
22 |
|
23 |
+
# let's load the english stsb dataset
|
24 |
stsb_dataset = load_dataset('stsb_multi_mt', 'en')
|
25 |
stsb_train = pd.DataFrame(stsb_dataset['train'])
|
26 |
stsb_test = pd.DataFrame(stsb_dataset['test'])
|
|
|
28 |
# let's create helper functions
|
29 |
nlp = spacy.load("en_core_web_sm")
|
30 |
|
|
|
31 |
def text_processing(sentence):
|
32 |
sentence = [token.lemma_.lower()
|
33 |
for token in nlp(sentence)
|
34 |
if token.is_alpha and not token.is_stop]
|
35 |
return sentence
|
36 |
|
|
|
37 |
def cos_sim(sentence1_emb, sentence2_emb):
|
38 |
cos_sim = cosine_similarity(sentence1_emb, sentence2_emb)
|
39 |
return np.diag(cos_sim)
|
40 |
|
|
|
41 |
# let's read the csv file
|
42 |
data = (pd.read_csv("SBERT_data.csv")).drop(['Unnamed: 0'], axis=1)
|
43 |
|
|
|
48 |
data['sentence2'] = data['sentence2'].astype('str')
|
49 |
data['sentence1'] = data['sentence1'].astype('str')
|
50 |
|
51 |
+
# loop through the data
|
52 |
XpathFinder = CrossEncoder("cross-encoder/stsb-roberta-base")
|
53 |
sentence_pairs = []
|
54 |
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
55 |
+
sentence_pairs.append([sentence1, sentence2])
|
56 |
|
57 |
data['SBERT CrossEncoder_Score'] = XpathFinder.predict(
|
58 |
+
sentence_pairs, show_progress_bar=True)
|
|
|
|
|
|
|
59 |
|
60 |
loaded_model = XpathFinder
|
61 |
|
62 |
+
# let's create containers
|
63 |
header_container = st.container()
|
64 |
mod_container = st.container()
|
65 |
|
66 |
+
# let's create the header
|
67 |
with header_container:
|
68 |
+
st.title("SBERT CrossEncoder")
|
69 |
+
st.markdown("This is a demo of the SBERT CrossEncoder model")
|
70 |
|
71 |
+
# let's create the model container
|
|
|
|
|
|
|
|
|
72 |
with mod_container:
|
73 |
+
# let's get input from the user
|
74 |
+
prompt = st.text_input("Enter a description below...")
|
75 |
+
|
76 |
+
if prompt:
|
77 |
+
simscore = loaded_model.predict([prompt])
|
78 |
+
# sort the values
|
79 |
+
data['SBERT CrossEncoder_Score'] = simscore
|
80 |
+
most_acc = data.head(5)
|
81 |
+
st.write(most_acc)
|
82 |
+
st.write("The most accurate sentence is: ", most_acc['sentence2'].iloc[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|