import streamlit as st from importlib.machinery import PathFinder import io import netrc import pickle import sys import pandas as pd import numpy as np import streamlit as st # let's import sentence transformer import sentence_transformers import torch ####################################### st.markdown( f""" """, unsafe_allow_html=True, ) # # let's load the saved model loaded_model = pickle.load(open('XpathFinder1.sav', 'rb')) # Containers header_container = st.container() mod_container = st.container() # Header with header_container: # different levels of text you can include in your app st.title("Xpath Finder App") # model container with mod_container: # collecting input from user prompt = st.text_input("Enter your description below ...") # Loading e data data = (pd.read_csv("/content/SBERT_data.csv") ).drop(['Unnamed: 0'], axis=1) data['prompt'] = prompt data.rename(columns={'target_text': 'sentence2', 'prompt': 'sentence1'}, inplace=True) data['sentence2'] = data['sentence2'].astype('str') data['sentence1'] = data['sentence1'].astype('str') # let's pass the input to the loaded_model with torch compiled with cuda if prompt: # let's get the result simscore = PathFinder.predict([prompt]) from sentence_transformers import CrossEncoder XpathFinder = CrossEncoder("cross-encoder/stsb-roberta-base") sentence_pairs = [] for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']): sentence_pairs.append([sentence1, sentence2]) # sorting the df to get highest scoring xpath_container data['SBERT CrossEncoder_Score'] = XpathFinder.predict(sentence_pairs) most_acc = data.head(5) # predictions st.write("Highest Similarity score: ", simscore) st.text("Is this one of these the Xpath you're looking for?") st.write(st.write(most_acc["input_text"]))