Spaces:
Runtime error
Runtime error
File size: 1,117 Bytes
abe0fc0 3a3492c abe0fc0 084c73c ccdee4b 084c73c abe0fc0 1929b2e abe0fc0 6127c3f 4f45310 abe0fc0 084c73c abe0fc0 4a8fb3a abe0fc0 4f45310 abe0fc0 084c73c abe0fc0 084c73c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from fastai.vision.all import *
import skimage
learn = load_learner("model.pkl")
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred, pred_idx, probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Redacted Document Classifier"
description = "A classifier trained on publicly released redacted (and unredacted) FOIA documents, using [fastai](https://github.com/fastai/fastai)."
with open("article.md") as f:
article = f.read()
examples = [
"test1.jpg",
"test2.jpg",
"test3.jpg",
"test4.jpg",
"test5.jpg",
]
interpretation = "default"
enable_queue = True
theme = "default"
allow_flagging = "never"
demo = gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(1024, 1024)),
outputs=gr.outputs.Label(num_top_classes=3),
title=title,
description=description,
article=article,
theme=theme,
allow_flagging=allow_flagging,
examples=examples,
interpretation=interpretation,
)
demo.launch(
cache_examples=True,
enable_queue=enable_queue,
)
|