File size: 1,117 Bytes
abe0fc0
 
 
 
3a3492c
abe0fc0
 
 
 
 
 
 
 
 
 
 
084c73c
ccdee4b
084c73c
 
 
 
abe0fc0
 
 
 
 
 
 
1929b2e
abe0fc0
6127c3f
4f45310
abe0fc0
084c73c
abe0fc0
4a8fb3a
abe0fc0
 
 
 
4f45310
 
abe0fc0
 
084c73c
 
 
 
abe0fc0
084c73c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
from fastai.vision.all import *
import skimage

learn = load_learner("model.pkl")

labels = learn.dls.vocab


def predict(img):
    img = PILImage.create(img)
    pred, pred_idx, probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}


title = "Redacted Document Classifier"

description = "A classifier trained on publicly released redacted (and unredacted) FOIA documents, using [fastai](https://github.com/fastai/fastai)."

with open("article.md") as f:
    article = f.read()

examples = [
    "test1.jpg",
    "test2.jpg",
    "test3.jpg",
    "test4.jpg",
    "test5.jpg",
]
interpretation = "default"
enable_queue = True
theme = "default"
allow_flagging = "never"

demo = gr.Interface(
    fn=predict,
    inputs=gr.inputs.Image(shape=(1024, 1024)),
    outputs=gr.outputs.Label(num_top_classes=3),
    title=title,
    description=description,
    article=article,
    theme=theme,
    allow_flagging=allow_flagging,
    examples=examples,
    interpretation=interpretation,
)

demo.launch(
    cache_examples=True,
    enable_queue=enable_queue,
)