import streamlit as st from groq import Groq import streamlit.components.v1 as components from st_copy_to_clipboard import st_copy_to_clipboard import urllib.parse import os import uuid import html # Streamlit page configuration st.set_page_config( page_title="Situate Learning", page_icon="🌟", layout="centered" ) # Function to inject Google Analytics using st.components.v1.html def inject_ga(): try: GA_MEASUREMENT_ID = st.secrets["google_analytics"]["measurement_id"] # Define the Google Analytics script GA_SCRIPT = f""" """ # Inject the script into the app components.html(GA_SCRIPT, height=0) except KeyError: st.error("Google Analytics measurement ID not found in secrets.") # Inject Google Analytics dynamically inject_ga() # Initialize the Groq client GROQ_API_KEY = st.secrets["GROQ_API_KEY"] os.environ["GROQ_API_KEY"] = GROQ_API_KEY client = Groq() if "session_uuid" not in st.session_state: st.session_state.update({ "session_uuid": str(uuid.uuid4()), "teacher_input": "", "ai_response": "", "ga_initialized": False }) def log_event_to_ga(event_name, event_label="", value=""): event_script = f""" """ if not st.session_state.get("ga_event_logged", False): st.markdown(event_script, unsafe_allow_html=True) st.session_state.ga_event_logged = True # Function to display the help modal # @st.dialog("Get Started", width="small") # def help_modal(): # st.write("Not braining today? Type in a simple concept to trigger a list of questions to better frame or close the lesson.") # st.markdown("For example:") # st.markdown("- *photosynthesis*") # st.markdown("- *algebra basics*") # st.markdown("- *moments (physics)*") # st.markdown("- *acids, salts and bases (chemistry)*") # st.markdown("- *price elasticity of demand*") # if st.button("Close Help"): # st.rerun() # Close the modal by triggering a script rerun # Streamlit Page Title st.title("🌟 Situate Learning") # # Help/Get Started Button # if st.button("Help / Get Started"): # help_modal() # Open the help modal # Teacher input field st.markdown("### What did you teach today?") st.session_state.teacher_input = st.text_input( "Enter today's lesson or topic:", value=st.session_state.teacher_input, placeholder="e.g. photosynthesis or quadratic equations" ) # Function to generate higher-order thinking questions based on the lesson def generate_questions(lesson_text): """Generate higher-order thinking questions using Groq and Llama.""" try: messages = [ {"role": "system", "content": "You are an enthusiastic, curious teacher assistant creating thought-provoking questions."}, {"role": "user", "content": f"Teacher: {lesson_text} Can you create some engaging, higher-order thinking questions related to this topic? Include interdisciplinary questions."} ] response = client.chat.completions.create( model="llama-3.1-8b-instant", messages=messages ) ai_response = response.choices[0].message.content.strip() return ai_response except Exception as e: st.error(f"An error occurred: {e}") return "Sorry, we couldn't generate questions. Please try again later." # Button to generate questions if st.button("Generate Questions"): if st.session_state.teacher_input.strip(): # Log the user input to GA log_event_to_ga(st.session_state.teacher_input) # Generate higher-order thinking questions based on teacher's input st.session_state.ai_response = generate_questions(st.session_state.teacher_input) st.markdown(f"### Higher-Order Thinking Questions:") st.write(st.session_state.ai_response) else: st.warning("Please provide a topic or lesson before submitting.") # Function to copy response to clipboard def copy_to_clipboard_script(response): sanitized_response = html.escape(response).replace("\n", "\\n").replace("\r", "\\r") return f""" """ # Footer and Feedback Section # Check if AI response exists if st.session_state.ai_response: # Add the Copy to Clipboard button st_copy_to_clipboard( st.session_state.ai_response, # Text to copy ) st.markdown("---") # Feedback Link st.markdown( """
""", unsafe_allow_html=True ) # Footer with Session ID st.markdown( f"