File size: 23,263 Bytes
78a6221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
from transformers import AutoTokenizer
from PIL import Image
import cv2
import torch
from omegaconf import OmegaConf
import math
from copy import deepcopy
import torch.nn.functional as F
import numpy as np
import clip
from transformers import AutoTokenizer

from kandinsky2.model.text_encoders import TextEncoder
from kandinsky2.vqgan.autoencoder import VQModelInterface, AutoencoderKL, MOVQ
from kandinsky2.model.samplers import DDIMSampler, PLMSSampler
from kandinsky2.model.model_creation import create_model, create_gaussian_diffusion
from kandinsky2.model.prior import PriorDiffusionModel, CustomizedTokenizer
from kandinsky2.utils import prepare_image, q_sample, process_images, prepare_mask


class Kandinsky2_1:
    
    def __init__(
        self, 
        config, 
        model_path, 
        prior_path, 
        device, 
        task_type="text2img"
    ):
        self.config = config
        self.device = device
        self.use_fp16 = self.config["model_config"]["use_fp16"]
        self.task_type = task_type
        self.clip_image_size = config["clip_image_size"]
        if task_type == "text2img":
            self.config["model_config"]["up"] = False
            self.config["model_config"]["inpainting"] = False
        elif task_type == "inpainting":
            self.config["model_config"]["up"] = False
            self.config["model_config"]["inpainting"] = True
        else:
            raise ValueError("Only text2img and inpainting is available")

        self.tokenizer1 = AutoTokenizer.from_pretrained(self.config["tokenizer_name"])
        self.tokenizer2 = CustomizedTokenizer()
        clip_mean, clip_std = torch.load(
            config["prior"]["clip_mean_std_path"], map_location="cpu"
        )

        self.prior = PriorDiffusionModel(
            config["prior"]["params"],
            self.tokenizer2,
            clip_mean,
            clip_std,
        )
        self.prior.load_state_dict(torch.load(prior_path, map_location='cpu'), strict=False)
        if self.use_fp16:
            self.prior = self.prior.half()
        self.text_encoder = TextEncoder(**self.config["text_enc_params"])
        if self.use_fp16:
            self.text_encoder = self.text_encoder.half()

        self.clip_model, self.preprocess = clip.load(
            config["clip_name"], device=self.device, jit=False
        )
        self.clip_model.eval()

        if self.config["image_enc_params"] is not None:
            self.use_image_enc = True
            self.scale = self.config["image_enc_params"]["scale"]
            if self.config["image_enc_params"]["name"] == "AutoencoderKL":
                self.image_encoder = AutoencoderKL(
                    **self.config["image_enc_params"]["params"]
                )
            elif self.config["image_enc_params"]["name"] == "VQModelInterface":
                self.image_encoder = VQModelInterface(
                    **self.config["image_enc_params"]["params"]
                )
            elif self.config["image_enc_params"]["name"] == "MOVQ":
                self.image_encoder = MOVQ(**self.config["image_enc_params"]["params"])
                self.image_encoder.load_state_dict(
                    torch.load(self.config["image_enc_params"]["ckpt_path"], map_location='cpu')
                )
            self.image_encoder.eval()
        else:
            self.use_image_enc = False
            
        self.config["model_config"]["cache_text_emb"] = True
        self.model = create_model(**self.config["model_config"])
        self.model.load_state_dict(torch.load(model_path, map_location='cpu'))
        if self.use_fp16:
            self.model.convert_to_fp16()
            self.image_encoder = self.image_encoder.half()

            self.model_dtype = torch.float16
        else:
            self.model_dtype = torch.float32
            
        self.image_encoder = self.image_encoder.to(self.device).eval()
        self.text_encoder = self.text_encoder.to(self.device).eval()
        self.prior = self.prior.to(self.device).eval()
        self.model.eval()
        self.model.to(self.device)

    def get_new_h_w(self, h, w):
        new_h = h // 64
        if h % 64 != 0:
            new_h += 1
        new_w = w // 64
        if w % 64 != 0:
            new_w += 1
        return new_h * 8, new_w * 8

    @torch.no_grad()
    def encode_text(self, text_encoder, tokenizer, prompt, batch_size):
        text_encoding = tokenizer(
            [prompt] * batch_size + [""] * batch_size,
            max_length=77,
            padding="max_length",
            truncation=True,
            return_attention_mask=True,
            add_special_tokens=True,
            return_tensors="pt",
        )

        tokens = text_encoding["input_ids"].to(self.device)
        mask = text_encoding["attention_mask"].to(self.device)

        full_emb, pooled_emb = text_encoder(tokens=tokens, mask=mask)
        return full_emb, pooled_emb

    @torch.no_grad()
    def generate_clip_emb(
        self,
        prompt,
        batch_size=1,
        prior_cf_scale=4,
        prior_steps="25",
        negative_prior_prompt="",
    ):
        prompts_batch = [prompt for _ in range(batch_size)]
        prior_cf_scales_batch = [prior_cf_scale] * len(prompts_batch)
        prior_cf_scales_batch = torch.tensor(prior_cf_scales_batch, device=self.device)
        max_txt_length = self.prior.model.text_ctx
        tok, mask = self.tokenizer2.padded_tokens_and_mask(
            prompts_batch, max_txt_length
        )
        cf_token, cf_mask = self.tokenizer2.padded_tokens_and_mask(
            [negative_prior_prompt], max_txt_length
        )
        if not (cf_token.shape == tok.shape):
            cf_token = cf_token.expand(tok.shape[0], -1)
            cf_mask = cf_mask.expand(tok.shape[0], -1)
        tok = torch.cat([tok, cf_token], dim=0)
        mask = torch.cat([mask, cf_mask], dim=0)
        tok, mask = tok.to(device=self.device), mask.to(device=self.device)

        x = self.clip_model.token_embedding(tok).type(self.clip_model.dtype)
        x = x + self.clip_model.positional_embedding.type(self.clip_model.dtype)
        x = x.permute(1, 0, 2)  # NLD -> LND|
        x = self.clip_model.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.clip_model.ln_final(x).type(self.clip_model.dtype)
        txt_feat_seq = x
        txt_feat = (x[torch.arange(x.shape[0]), tok.argmax(dim=-1)] @ self.clip_model.text_projection)
        txt_feat, txt_feat_seq = txt_feat.float().to(self.device), txt_feat_seq.float().to(self.device)
        img_feat = self.prior(
            txt_feat,
            txt_feat_seq,
            mask,
            prior_cf_scales_batch,
            timestep_respacing=prior_steps,
        )
        return img_feat.to(self.model_dtype)

    @torch.no_grad()
    def encode_images(self, image, is_pil=False):
        if is_pil:
            image = self.preprocess(image).unsqueeze(0).to(self.device)
        return self.clip_model.encode_image(image).to(self.model_dtype)

    @torch.no_grad()
    def generate_img(
        self,
        prompt,
        img_prompt,
        batch_size=1,
        diffusion=None,
        guidance_scale=7,
        init_step=None,
        noise=None,
        init_img=None,
        img_mask=None,
        h=512,
        w=512,
        sampler="ddim_sampler",
        num_steps=50,
    ):
        new_h, new_w = self.get_new_h_w(h, w)
        full_batch_size = batch_size * 2
        model_kwargs = {}

        if init_img is not None and self.use_fp16:
            init_img = init_img.half()
        if img_mask is not None and self.use_fp16:
            img_mask = img_mask.half()
        model_kwargs["full_emb"], model_kwargs["pooled_emb"] = self.encode_text(
            text_encoder=self.text_encoder,
            tokenizer=self.tokenizer1,
            prompt=prompt,
            batch_size=batch_size,
        )
        model_kwargs["image_emb"] = img_prompt

        if self.task_type == "inpainting":
            init_img = init_img.to(self.device)
            img_mask = img_mask.to(self.device)
            model_kwargs["inpaint_image"] = init_img * img_mask
            model_kwargs["inpaint_mask"] = img_mask

        def model_fn(x_t, ts, **kwargs):
            half = x_t[: len(x_t) // 2]
            combined = torch.cat([half, half], dim=0)
            model_out = self.model(combined, ts, **kwargs)
            eps, rest = model_out[:, :4], model_out[:, 4:]
            cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
            half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
            eps = torch.cat([half_eps, half_eps], dim=0)
            if sampler == "p_sampler":
                return torch.cat([eps, rest], dim=1)
            else:
                return eps

        if noise is not None:
            noise = noise.float()
        if self.task_type == "inpainting":
            def denoised_fun(x_start):
                x_start = x_start.clamp(-2, 2)
                return x_start * (1 - img_mask) + init_img * img_mask
        else:
            def denoised_fun(x):
                return x.clamp(-2, 2)

        if sampler == "p_sampler":
            self.model.del_cache()
            samples = diffusion.p_sample_loop(
                model_fn,
                (full_batch_size, 4, new_h, new_w),
                device=self.device,
                noise=noise,
                progress=True,
                model_kwargs=model_kwargs,
                init_step=init_step,
                denoised_fn=denoised_fun,
            )[:batch_size]
            self.model.del_cache()
        else:
            if sampler == "ddim_sampler":
                sampler = DDIMSampler(
                    model=model_fn,
                    old_diffusion=diffusion,
                    schedule="linear",
                )
            elif sampler == "plms_sampler":
                sampler = PLMSSampler(
                    model=model_fn,
                    old_diffusion=diffusion,
                    schedule="linear",
                )
            else:
                raise ValueError("Only ddim_sampler and plms_sampler is available")
                
            self.model.del_cache()
            samples, _ = sampler.sample(
                num_steps,
                batch_size * 2,
                (4, new_h, new_w),
                conditioning=model_kwargs,
                x_T=noise,
                init_step=init_step,
            )
            self.model.del_cache()
            samples = samples[:batch_size]
            
        if self.use_image_enc:
            if self.use_fp16:
                samples = samples.half()
            samples = self.image_encoder.decode(samples / self.scale)
            
        samples = samples[:, :, :h, :w]
        return process_images(samples)

    @torch.no_grad()
    def create_zero_img_emb(self, batch_size):
        img = torch.zeros(1, 3, self.clip_image_size, self.clip_image_size).to(self.device)
        return self.encode_images(img, is_pil=False).repeat(batch_size, 1)

    @torch.no_grad()
    def generate_text2img(
        self,
        prompt,
        num_steps=100,
        batch_size=1,
        guidance_scale=7,
        h=512,
        w=512,
        sampler="ddim_sampler",
        prior_cf_scale=4,
        prior_steps="25",
        negative_prior_prompt="",
        negative_decoder_prompt="",
    ):
        # generate clip embeddings
        image_emb = self.generate_clip_emb(
            prompt,
            batch_size=batch_size,
            prior_cf_scale=prior_cf_scale,
            prior_steps=prior_steps,
            negative_prior_prompt=negative_prior_prompt,
        )
        if negative_decoder_prompt == "":
            zero_image_emb = self.create_zero_img_emb(batch_size=batch_size)
        else:
            zero_image_emb = self.generate_clip_emb(
                negative_decoder_prompt,
                batch_size=batch_size,
                prior_cf_scale=prior_cf_scale,
                prior_steps=prior_steps,
                negative_prior_prompt=negative_prior_prompt,
            )

        image_emb = torch.cat([image_emb, zero_image_emb], dim=0).to(self.device)
        
        # load diffusion
        config = deepcopy(self.config)
        if sampler == "p_sampler":
            config["diffusion_config"]["timestep_respacing"] = str(num_steps)
        diffusion = create_gaussian_diffusion(**config["diffusion_config"])
        
        return self.generate_img(
            prompt=prompt,
            img_prompt=image_emb,
            batch_size=batch_size,
            guidance_scale=guidance_scale,
            h=h,
            w=w,
            sampler=sampler,
            num_steps=num_steps,
            diffusion=diffusion,
        )

    @torch.no_grad()
    def mix_images(
        self,
        images_texts,
        weights,
        num_steps=100,
        batch_size=1,
        guidance_scale=7,
        h=512,
        w=512,
        sampler="ddim_sampler",
        prior_cf_scale=4,
        prior_steps="25",
        negative_prior_prompt="",
        negative_decoder_prompt="",
    ):
        assert len(images_texts) == len(weights) and len(images_texts) > 0
        
        # generate clip embeddings
        image_emb = None
        for i in range(len(images_texts)):
            if image_emb is None:
                if type(images_texts[i]) == str:
                    image_emb = weights[i] * self.generate_clip_emb(
                        images_texts[i],
                        batch_size=1,
                        prior_cf_scale=prior_cf_scale,
                        prior_steps=prior_steps,
                        negative_prior_prompt=negative_prior_prompt,
                    )
                else:
                    image_emb = self.encode_images(images_texts[i], is_pil=True) * weights[i]
            else:
                if type(images_texts[i]) == str:
                    image_emb = image_emb + weights[i] * self.generate_clip_emb(
                        images_texts[i],
                        batch_size=1,
                        prior_cf_scale=prior_cf_scale,
                        prior_steps=prior_steps,
                        negative_prior_prompt=negative_prior_prompt,
                    )
                else:
                    image_emb = image_emb + self.encode_images(images_texts[i], is_pil=True) * weights[i]
                    
        image_emb = image_emb.repeat(batch_size, 1)
        if negative_decoder_prompt == "":
            zero_image_emb = self.create_zero_img_emb(batch_size=batch_size)
        else:
            zero_image_emb = self.generate_clip_emb(
                negative_decoder_prompt,
                batch_size=batch_size,
                prior_cf_scale=prior_cf_scale,
                prior_steps=prior_steps,
                negative_prior_prompt=negative_prior_prompt,
            )
        image_emb = torch.cat([image_emb, zero_image_emb], dim=0).to(self.device)
        
        # load diffusion
        config = deepcopy(self.config)
        if sampler == "p_sampler":
            config["diffusion_config"]["timestep_respacing"] = str(num_steps)
        diffusion = create_gaussian_diffusion(**config["diffusion_config"])
        return self.generate_img(
            prompt="",
            img_prompt=image_emb,
            batch_size=batch_size,
            guidance_scale=guidance_scale,
            h=h,
            w=w,
            sampler=sampler,
            num_steps=num_steps,
            diffusion=diffusion,
        )

    @torch.no_grad()
    def generate_img2img(
        self,
        prompt,
        pil_img,
        strength=0.7,
        num_steps=100,
        batch_size=1,
        guidance_scale=7,
        h=512,
        w=512,
        sampler="ddim_sampler",
        prior_cf_scale=4,
        prior_steps="25",
    ):
        # generate clip embeddings
        image_emb = self.generate_clip_emb(
            prompt,
            batch_size=batch_size,
            prior_cf_scale=prior_cf_scale,
            prior_steps=prior_steps,
        )
        zero_image_emb = self.create_zero_img_emb(batch_size=batch_size)
        image_emb = torch.cat([image_emb, zero_image_emb], dim=0).to(self.device)
        
        # load diffusion
        config = deepcopy(self.config)
        if sampler == "p_sampler":
            config["diffusion_config"]["timestep_respacing"] = str(num_steps)
        diffusion = create_gaussian_diffusion(**config["diffusion_config"])
        
        image = prepare_image(pil_img, h=h, w=w).to(self.device)
        if self.use_fp16:
            image = image.half()
        image = self.image_encoder.encode(image) * self.scale
        
        start_step = int(diffusion.num_timesteps * (1 - strength))
        image = q_sample(
            image,
            torch.tensor(diffusion.timestep_map[start_step - 1]).to(self.device),
            schedule_name=config["diffusion_config"]["noise_schedule"],
            num_steps=config["diffusion_config"]["steps"],
        )
        
        image = image.repeat(2, 1, 1, 1)
        return self.generate_img(
            prompt=prompt,
            img_prompt=image_emb,
            batch_size=batch_size,
            guidance_scale=guidance_scale,
            h=h,
            w=w,
            sampler=sampler,
            num_steps=num_steps,
            diffusion=diffusion,
            noise=image,
            init_step=start_step,
        )

    @torch.no_grad()
    def generate_inpainting(
        self,
        prompt,
        pil_img,
        img_mask,
        num_steps=100,
        batch_size=1,
        guidance_scale=7,
        h=512,
        w=512,
        sampler="ddim_sampler",
        prior_cf_scale=4,
        prior_steps="25",
        negative_prior_prompt="",
        negative_decoder_prompt="",
    ):
        # generate clip embeddings
        image_emb = self.generate_clip_emb(
            prompt,
            batch_size=batch_size,
            prior_cf_scale=prior_cf_scale,
            prior_steps=prior_steps,
            negative_prior_prompt=negative_prior_prompt,
        )
        zero_image_emb = self.create_zero_img_emb(batch_size=batch_size)
        image_emb = torch.cat([image_emb, zero_image_emb], dim=0).to(self.device)
        
        # load diffusion
        config = deepcopy(self.config)
        if sampler == "p_sampler":
            config["diffusion_config"]["timestep_respacing"] = str(num_steps)
        diffusion = create_gaussian_diffusion(**config["diffusion_config"])
        image = prepare_image(pil_img, w, h).to(self.device)
        if self.use_fp16:
            image = image.half()
        image = self.image_encoder.encode(image) * self.scale
        image_shape = tuple(image.shape[-2:])
        img_mask = torch.from_numpy(img_mask).unsqueeze(0).unsqueeze(0)
        img_mask = F.interpolate(
            img_mask,
            image_shape,
            mode="nearest",
        )
        img_mask = prepare_mask(img_mask).to(self.device)
        if self.use_fp16:
            img_mask = img_mask.half()
        image = image.repeat(2, 1, 1, 1)
        img_mask = img_mask.repeat(2, 1, 1, 1)
        
        return self.generate_img(
            prompt=prompt,
            img_prompt=image_emb,
            batch_size=batch_size,
            guidance_scale=guidance_scale,
            h=h,
            w=w,
            sampler=sampler,
            num_steps=num_steps,
            diffusion=diffusion,
            init_img=image,
            img_mask=img_mask,
        )
import os
from huggingface_hub import hf_hub_url, cached_download
from copy import deepcopy
from omegaconf.dictconfig import DictConfig

def get_kandinsky2_1(
    device,
    task_type="text2img",
    cache_dir="/tmp/kandinsky2",
    use_auth_token=None,
    use_flash_attention=False,
):
    cache_dir = os.path.join(cache_dir, "2_1")
    config = DictConfig(deepcopy(CONFIG_2_1))
    config["model_config"]["use_flash_attention"] = use_flash_attention
    if task_type == "text2img":
        model_name = "decoder_fp16.ckpt"
        config_file_url = hf_hub_url(repo_id="sberbank-ai/Kandinsky_2.1", filename=model_name)
    elif task_type == "inpainting":
        model_name = "inpainting_fp16.ckpt"
        config_file_url = hf_hub_url(repo_id="sberbank-ai/Kandinsky_2.1", filename=model_name)
    cached_download(
        config_file_url,
        cache_dir=cache_dir,
        force_filename=model_name,
        use_auth_token=use_auth_token,
    )
    prior_name = "prior_fp16.ckpt"
    config_file_url = hf_hub_url(repo_id="sberbank-ai/Kandinsky_2.1", filename=prior_name)
    cached_download(
        config_file_url,
        cache_dir=cache_dir,
        force_filename=prior_name,
        use_auth_token=use_auth_token,
    )

    cache_dir_text_en = os.path.join(cache_dir, "text_encoder")
    for name in [
        "config.json",
        "pytorch_model.bin",
        "sentencepiece.bpe.model",
        "special_tokens_map.json",
        "tokenizer.json",
        "tokenizer_config.json",
    ]:
        config_file_url = hf_hub_url(repo_id="sberbank-ai/Kandinsky_2.1", filename=f"text_encoder/{name}")
        cached_download(
            config_file_url,
            cache_dir=cache_dir_text_en,
            force_filename=name,
            use_auth_token=use_auth_token,
        )

    config_file_url = hf_hub_url(repo_id="sberbank-ai/Kandinsky_2.1", filename="movq_final.ckpt")
    cached_download(
        config_file_url,
        cache_dir=cache_dir,
        force_filename="movq_final.ckpt",
        use_auth_token=use_auth_token,
    )

    config_file_url = hf_hub_url(repo_id="sberbank-ai/Kandinsky_2.1", filename="ViT-L-14_stats.th")
    cached_download(
        config_file_url,
        cache_dir=cache_dir,
        force_filename="ViT-L-14_stats.th",
        use_auth_token=use_auth_token,
    )

    config["tokenizer_name"] = cache_dir_text_en
    config["text_enc_params"]["model_path"] = cache_dir_text_en
    config["prior"]["clip_mean_std_path"] = os.path.join(cache_dir, "ViT-L-14_stats.th")
    config["image_enc_params"]["ckpt_path"] = os.path.join(cache_dir, "movq_final.ckpt")
    cache_model_name = os.path.join(cache_dir, model_name)
    cache_prior_name = os.path.join(cache_dir, prior_name)
    model = Kandinsky2_1(config, cache_model_name, cache_prior_name, device, task_type=task_type)
    return model


def get_kandinsky2(
    device,
    task_type="text2img",
    cache_dir="/tmp/kandinsky2",
    use_auth_token=None,
    model_version="2.1",
    use_flash_attention=False,
):
    if model_version == "2.0":
        model = get_kandinsky2_0(
            device,
            task_type=task_type,
            cache_dir=cache_dir,
            use_auth_token=use_auth_token,
        )
    elif model_version == "2.1":
        model = get_kandinsky2_1(
            device,
            task_type=task_type,
            cache_dir=cache_dir,
            use_auth_token=use_auth_token,
            use_flash_attention=use_flash_attention,
        )
    elif model_version == "2.2":
        model = Kandinsky2_2(device=device, task_type=task_type)
    else:
        raise ValueError("Only 2.0 and 2.1 is available")
    
    return model